Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 115(17): E4101-E4110, 2018 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-29632206

RESUMO

During development, ventricular chamber maturation is a crucial step in the formation of a functionally competent postnatal heart. Defects in this process can lead to left ventricular noncompaction cardiomyopathy and heart failure. However, molecular mechanisms underlying ventricular chamber development remain incompletely understood. Neddylation is a posttranslational modification that attaches ubiquitin-like protein NEDD8 to protein targets via NEDD8-specific E1-E2-E3 enzymes. Here, we report that neddylation is temporally regulated in the heart and plays a key role in cardiac development. Cardiomyocyte-specific knockout of NAE1, a subunit of the E1 neddylation activating enzyme, significantly decreased neddylated proteins in the heart. Mice lacking NAE1 developed myocardial hypoplasia, ventricular noncompaction, and heart failure at late gestation, which led to perinatal lethality. NAE1 deletion resulted in dysregulation of cell cycle-regulatory genes and blockade of cardiomyocyte proliferation in vivo and in vitro, which was accompanied by the accumulation of the Hippo kinases Mst1 and LATS1/2 and the inactivation of the YAP pathway. Furthermore, reactivation of YAP signaling in NAE1-inactivated cardiomyocytes restored cell proliferation, and YAP-deficient hearts displayed a noncompaction phenotype, supporting an important role of Hippo-YAP signaling in NAE1-depleted hearts. Mechanistically, we found that neddylation regulates Mst1 and LATS2 degradation and that Cullin 7, a NEDD8 substrate, acts as the ubiquitin ligase of Mst1 to enable YAP signaling and cardiomyocyte proliferation. Together, these findings demonstrate a role for neddylation in heart development and, more specifically, in the maturation of ventricular chambers and also identify the NEDD8 substrate Cullin 7 as a regulator of Hippo-YAP signaling.


Assuntos
Ventrículos do Coração/metabolismo , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Proteína NEDD8/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proteínas de Ciclo Celular , Proteínas Culina/genética , Proteínas Culina/metabolismo , Ventrículos do Coração/patologia , Via de Sinalização Hippo , Camundongos , Camundongos Knockout , Miocárdio/patologia , Miócitos Cardíacos/patologia , Proteína NEDD8/genética , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Proteínas de Sinalização YAP
2.
Am J Physiol Heart Circ Physiol ; 316(6): H1406-H1416, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30925068

RESUMO

Alterations in perinatal conditions (such as preterm birth) is linked to adult health and disease, in particular, the cardiovascular system. Neddylation, a novel posttranslational modification through which the ubiquitin-like protein NEDD8 is conjugated to protein substrates, has emerged as an important mechanism regulating embryonic cardiac chamber maturation. However, the importance of neddylation in postpartum cardiac development has not been investigated. Here, we aimed to determine whether transient, postnatal inhibition of neddylation has immediate and prolonged impact on the structure and function of the neonatal and adult hearts. Sprague-Dawley pups were given three intraperitoneal injections of MLN4924 (MLN), a specific neddylation inhibitor, at postnatal days (P)1, 3, and 5. Cardiac structure and function were temporally assessed during aging and after 2 wk of isoproterenol (ISO) infusion in adulthood. MLN treatment resulted in modest reduction of neddylated proteins in neonatal hearts. The MLN-treated rats developed cardiac hypertrophy and dysfunction by P7, which was accompanied by significantly reduced cardiomyocyte proliferation. At 3 mo of age, cardiac contractile function was restored in MLN-treated rats, but MLN-treated hearts displayed hypertrophic phenotype. Whereas ISO infusion triggered compensatory cardiac hypertrophy without impairing cardiac contractility in the control rats, the MLN-treated rats displayed a similar degree of hypertrophy, which quickly progressed to decompensation with ventricular wall thinning, chamber dilatation, and reduced ejection fraction as well as exacerbated pathological cardiac remodeling. Our findings suggest that neddylation is required for postnatal cardiac development and that perturbation of neddylation during development predisposes adult hearts to cardiac failure under stress conditions. NEW & NOTEWORTHY Our study demonstrates that perinatal perturbation of neddylation induces cardiomyopathy, impairs postnatal cardiac development, and increases susceptibility to catecholamine-induced cardiac dysfunction. The results reveal a previously unappreciated role of neddylation in postnatal cardiac maturation and call for close monitoring for the potential cardiotoxicity of MLN4924 (pevonedistat) and other agents that modify neddylation, especially in pregnant women and preadolescents.


Assuntos
Ciclopentanos/toxicidade , Insuficiência Cardíaca/induzido quimicamente , Hipertrofia Ventricular Esquerda/induzido quimicamente , Isoproterenol , Proteína NEDD8/antagonistas & inibidores , Pirimidinas/toxicidade , Função Ventricular Esquerda/efeitos dos fármacos , Remodelação Ventricular/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Modelos Animais de Doenças , Insuficiência Cardíaca/fisiopatologia , Hipertrofia Ventricular Esquerda/enzimologia , Hipertrofia Ventricular Esquerda/patologia , Hipertrofia Ventricular Esquerda/fisiopatologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/enzimologia , Miócitos Cardíacos/patologia , Proteína NEDD8/metabolismo , Ratos Sprague-Dawley , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitinação
3.
Nat Cell Biol ; 24(1): 35-50, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35027734

RESUMO

Vascular endothelial growth factor receptor type 2 (VEGFR2, also known as KDR and FLK1) signalling in endothelial cells (ECs) is essential for developmental and reparative angiogenesis. Reactive oxygen species and copper (Cu) are also involved in these processes. However, their inter-relationship is poorly understood. Evidence of the role of the endothelial Cu importer CTR1 (also known as SLC31A1) in VEGFR2 signalling and angiogenesis in vivo is lacking. Here, we show that CTR1 functions as a redox sensor to promote angiogenesis in ECs. CTR1-depleted ECs showed reduced VEGF-induced VEGFR2 signalling and angiogenic responses. Mechanistically, CTR1 was rapidly sulfenylated at Cys189 at its cytosolic C terminus after stimulation with VEGF, which induced CTR1-VEGFR2 disulfide bond formation and their co-internalization to early endosomes, driving sustained VEGFR2 signalling. In vivo, EC-specific Ctr1-deficient mice or CRISPR-Cas9-generated redox-dead Ctr1(C187A)-knockin mutant mice had impaired developmental and reparative angiogenesis. Thus, oxidation of CTR1 at Cys189 promotes VEGFR2 internalization and signalling to enhance angiogenesis. Our study uncovers an important mechanism for sensing reactive oxygen species through CTR1 to drive neovascularization.


Assuntos
Transportador de Cobre 1/metabolismo , Cobre/metabolismo , Neovascularização Fisiológica/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Animais , Bovinos , Linhagem Celular , Transportador de Cobre 1/genética , Cisteína/metabolismo , Feminino , Células HEK293 , Células Endoteliais da Veia Umbilical Humana , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oxirredução , Transdução de Sinais/fisiologia
4.
Front Physiol ; 11: 612927, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33391028

RESUMO

Defects in protein quality control have been increasingly recognized as pathogenic factors in the development of heart failure, a persistent devastating disease lacking efficacious therapies. Ubiquitin and ubiquitin-like proteins, a family of post-translational modifying polypeptides, play important roles in controlling protein quality by maintaining the stability and functional diversity of the proteome. NEDD8 (neural precursor cell expressed, developmentally downregulated 8), a small ubiquitin-like protein, was discovered two decades ago but until recently the biological significance of NEDD8 modifications (neddylation) in the heart has not been appreciated. In this review, we summarize the current knowledge of the biology of neddylation, highlighting several mechanisms by which neddylation regulates the function of its downstream targets, and discuss the expanding roles for neddylation in cardiac physiology and disease, with an emphasis on cardiac protein quality control. Finally, we outline challenges linked to the study of neddylation in health and disease.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA