Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 625(7996): 673-678, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38267680

RESUMO

Quantum electrodynamics (QED), the quantum field theory that describes the interaction between light and matter, is commonly regarded as the best-tested quantum theory in modern physics. However, this claim is mostly based on extremely precise studies performed in the domain of relatively low field strengths and light atoms and ions1-6. In the realm of very strong electromagnetic fields such as in the heaviest highly charged ions (with nuclear charge Z ≫ 1), QED calculations enter a qualitatively different, non-perturbative regime. Yet, the corresponding experimental studies are very challenging, and theoretical predictions are only partially tested. Here we present an experiment sensitive to higher-order QED effects and electron-electron interactions in the high-Z regime. This is achieved by using a multi-reference method based on Doppler-tuned X-ray emission from stored relativistic uranium ions with different charge states. The energy of the 1s1/22p3/2 J = 2 → 1s1/22s1/2 J = 1 intrashell transition in the heaviest two-electron ion (U90+) is obtained with an accuracy of 37 ppm. Furthermore, a comparison of uranium ions with different numbers of bound electrons enables us to disentangle and to test separately the one-electron higher-order QED effects and the bound electron-electron interaction terms without the uncertainty related to the nuclear radius. Moreover, our experimental result can discriminate between several state-of-the-art theoretical approaches and provides an important benchmark for calculations in the strong-field domain.

2.
Phys Rev Lett ; 133(2): 022502, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39073976

RESUMO

The nuclear two-photon or double-gamma (2γ) decay is a second-order electromagnetic process whereby a nucleus in an excited state emits two gamma rays simultaneously. To be able to directly measure the 2γ decay rate in the low-energy regime below the electron-positron pair-creation threshold, we combined the isochronous mode of a storage ring with Schottky resonant cavities. The newly developed technique can be applied to isomers with excitation energies down to ∼100 keV and half-lives as short as ∼10 ms. The half-life for the 2γ decay of the first-excited 0^{+} state in bare ^{72}Ge ions was determined to be 23.9(6) ms, which strongly deviates from expectations.

3.
Phys Rev Lett ; 131(2): 022502, 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37505949

RESUMO

The excitation energy of the 1/2^{-} isomer in ^{99}In at N=50 is measured to be 671(37) keV and the mass uncertainty of the 9/2^{+} ground state is significantly reduced using the ISOLTRAP mass spectrometer at ISOLDE/CERN. The measurements exploit a major improvement in the resolution of the multireflection time-of-flight mass spectrometer. The results reveal an intriguing constancy of the 1/2^{-} isomer excitation energies in neutron-deficient indium that persists down to the N=50 shell closure, even when all neutrons are removed from the valence shell. This trend is used to test large-scale shell model, ab initio, and density functional theory calculations. The models have difficulties describing both the isomer excitation energies and ground-state electromagnetic moments along the indium chain.

4.
Phys Rev Lett ; 130(19): 192501, 2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37243656

RESUMO

Using a novel method of isochronous mass spectrometry, the masses of ^{62}Ge, ^{64}As, ^{66}Se, and ^{70}Kr are measured for the first time, and the masses of ^{58}Zn, ^{61}Ga, ^{63}Ge, ^{65}As, ^{67}Se, ^{71}Kr, and ^{75}Sr are redetermined with improved accuracy. The new masses allow us to derive residual proton-neutron interactions (δV_{pn}) in the N=Z nuclei, which are found to decrease (increase) with increasing mass A for even-even (odd-odd) nuclei beyond Z=28. This bifurcation of δV_{pn} cannot be reproduced by the available mass models, nor is it consistent with expectations of a pseudo-SU(4) symmetry restoration in the fp shell. We performed ab initio calculations with a chiral three-nucleon force (3NF) included, which indicate the enhancement of the T=1 pn pairing over the T=0 pn pairing in this mass region, leading to the opposite evolving trends of δV_{pn} in even-even and odd-odd nuclei.

5.
Phys Rev Lett ; 129(14): 142502, 2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36240396

RESUMO

The root mean square radii of the proton density distribution in ^{16-24}O derived from measurements of charge changing cross sections with a carbon target at ∼900A MeV together with the matter radii portray thick neutron skin for ^{22-24}O despite ^{22,24}O being doubly magic. Imprints of the shell closures at N=14 and 16 are reflected in local minima of their proton radii that provide evidence for the tensor interaction causing them. The radii agree with ab initio calculations employing the chiral NNLO_{sat} interaction, though skin thickness predictions are challenged. Shell model predictions agree well with the data.


Assuntos
Nêutrons , Prótons , Carbono
6.
Phys Rev Lett ; 128(15): 152701, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35499908

RESUMO

The Rare-RI Ring (R3) is a recently commissioned cyclotronlike storage ring mass spectrometer dedicated to mass measurements of exotic nuclei far from stability at Radioactive Isotope Beam Factory (RIBF) in RIKEN. The first application of mass measurement using the R3 mass spectrometer at RIBF is reported. Rare isotopes produced at RIBF-^{127}Sn, ^{126}In, ^{125}Cd, ^{124}Ag, ^{123}Pd-were injected in R3. Masses of ^{126}In, ^{125}Cd, and ^{123}Pd were measured whereby the mass uncertainty of ^{123}Pd was improved. This is the first reported measurement with a new storage ring mass spectrometry technique realized at a heavy-ion cyclotron and employing individual injection of the preidentified rare nuclei. The latter is essential for the future mass measurements of the rarest isotopes produced at RIBF. The impact of the new ^{123}Pd result on the solar r-process abundances in a neutron star merger event is investigated by performing reaction network calculations of 20 trajectories with varying electron fraction Y_{e}. It is found that the neutron capture cross section on ^{123}Pd increases by a factor of 2.2 and ß-delayed neutron emission probability, P_{1 n}, of ^{123}Rh increases by 14%. The neutron capture cross section on ^{122}Pd decreases by a factor of 2.6 leading to pileup of material at A=122, thus reproducing the trend of the solar r-process abundances. The trend of the two-neutron separation energies (S_{2n}) was investigated for the Pd isotopic chain. The new mass measurement with improved uncertainty excludes large changes of the S_{2n} value at N=77. Such large increase of the S_{2n} values before N=82 was proposed as an alternative to the quenching of the N=82 shell gap to reproduce r-process abundances in the mass region of A=112-124.

7.
Phys Rev Lett ; 124(9): 092502, 2020 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-32202869

RESUMO

We probe the N=82 nuclear shell closure by mass measurements of neutron-rich cadmium isotopes with the ISOLTRAP spectrometer at ISOLDE-CERN. The new mass of ^{132}Cd offers the first value of the N=82, two-neutron shell gap below Z=50 and confirms the phenomenon of mutually enhanced magicity at ^{132}Sn. Using the recently implemented phase-imaging ion-cyclotron-resonance method, the ordering of the low-lying isomers in ^{129}Cd and their energies are determined. The new experimental findings are used to test large-scale shell-model, mean-field, and beyond-mean-field calculations, as well as the ab initio valence-space in-medium similarity renormalization group.

8.
Phys Rev Lett ; 125(19): 192505, 2020 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-33216598

RESUMO

Mass-separated ^{187}Ta_{114} in a high-spin isomeric state has been produced for the first time by multinucleon transfer reactions, employing an argon gas-stopping cell and laser ionization. Internal γ rays revealed a T_{1/2}=7.3±0.9 s isomer at 1778±1 keV, which decays through a rotational band with perturbations associated with the approach to a prolate-oblate shape transition. Model calculations show less influence from triaxiality compared to heavier elements in the same mass region. The isomer-decay reduced E2 hindrance factor f_{ν}=27±1 supports the interpretation that axial symmetry is approximately conserved.

9.
Phys Rev Lett ; 122(9): 092701, 2019 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-30932526

RESUMO

We report the first measurement of low-energy proton-capture cross sections of ^{124}Xe in a heavy-ion storage ring. ^{124}Xe^{54+} ions of five different beam energies between 5.5 and 8 AMeV were stored to collide with a windowless hydrogen target. The ^{125}Cs reaction products were directly detected. The interaction energies are located on the high energy tail of the Gamow window for hot, explosive scenarios such as supernovae and x-ray binaries. The results serve as an important test of predicted astrophysical reaction rates in this mass range. Good agreement in the prediction of the astrophysically important proton width at low energy is found, with only a 30% difference between measurement and theory. Larger deviations are found above the neutron emission threshold, where also neutron and γ widths significantly impact the cross sections. The newly established experimental method is a very powerful tool to investigate nuclear reactions on rare ion beams at low center-of-mass energies.

10.
Phys Rev Lett ; 123(9): 092502, 2019 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-31524489

RESUMO

The most remote isotope from the proton dripline (by 4 atomic mass units) has been observed: ^{31}K. It is unbound with respect to three-proton (3p) emission, and its decays have been detected in flight by measuring the trajectories of all decay products using microstrip detectors. The 3p emission processes have been studied by the means of angular correlations of ^{28}S+3p and the respective decay vertices. The energies of the previously unknown ground and excited states of ^{31}K have been determined. This provides its 3p separation energy value S_{3p} of -4.6(2) MeV. Upper half-life limits of 10 ps of the observed ^{31}K states have been derived from distributions of the measured decay vertices.

11.
Phys Rev Lett ; 117(18): 182503, 2016 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-27835000

RESUMO

Masses of ^{52g,52m}Co were measured for the first time with an accuracy of ∼10 keV, an unprecedented precision reached for short-lived nuclei in the isochronous mass spectrometry. Combining our results with the previous ß-γ measurements of ^{52}Ni, the T=2, J^{π}=0^{+} isobaric analog state (IAS) in ^{52}Co was newly assigned, questioning the conventional identification of IASs from the ß-delayed proton emissions. Using our energy of the IAS in ^{52}Co, the masses of the T=2 multiplet fit well into the isobaric multiplet mass equation. We find that the IAS in ^{52}Co decays predominantly via γ transitions while the proton emission is negligibly small. According to our large-scale shell model calculations, this phenomenon has been interpreted to be due to very low isospin mixing in the IAS.

12.
Phys Rev Lett ; 117(10): 102501, 2016 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-27636470

RESUMO

Proton radii of ^{12-19}C densities derived from first accurate charge changing cross section measurements at 900A MeV with a carbon target are reported. A thick neutron surface evolves from ∼0.5 fm in ^{15}C to ∼1 fm in ^{19}C. The halo radius in ^{19}C is found to be 6.4±0.7 fm as large as ^{11}Li. Ab initio calculations based on chiral nucleon-nucleon and three-nucleon forces reproduce the radii well.

13.
Phys Rev Lett ; 117(1): 012501, 2016 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-27419564

RESUMO

The ß-delayed neutron emission probabilities of neutron rich Hg and Tl nuclei have been measured together with ß-decay half-lives for 20 isotopes of Au, Hg, Tl, Pb, and Bi in the mass region N≳126. These are the heaviest species where neutron emission has been observed so far. These measurements provide key information to evaluate the performance of nuclear microscopic and phenomenological models in reproducing the high-energy part of the ß-decay strength distribution. This provides important constraints on global theoretical models currently used in r-process nucleosynthesis.

14.
Phys Rev Lett ; 115(23): 232501, 2015 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-26684113

RESUMO

Masses adjacent to the classical waiting-point nuclide ^{130}Cd have been measured by using the Penning-trap spectrometer ISOLTRAP at ISOLDE/CERN. We find a significant deviation of over 400 keV from earlier values evaluated by using nuclear beta-decay data. The new measurements show the reduction of the N=82 shell gap below the doubly magic ^{132}Sn. The nucleosynthesis associated with the ejected wind from type-II supernovae as well as from compact object binary mergers is studied, by using state-of-the-art hydrodynamic simulations. We find a consistent and direct impact of the newly measured masses on the calculated abundances in the A=128-132 region and a reduction of the uncertainties from the precision mass input data.

15.
Phys Rev Lett ; 115(20): 202501, 2015 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-26613434

RESUMO

Previously unknown isotopes (30)Ar and (29)Cl have been identified by measurement of the trajectories of their in-flight decay products (28)S+p+p and (28)S+p, respectively. The analysis of angular correlations of the fragments provided information on decay energies and the structure of the parent states. The ground states of (30)Ar and (29)Cl were found at 2.25(-0.10)(+0.15) and 1.8±0.1 MeV above the two- and one-proton thresholds, respectively. The lowest states in (30)Ar and (29)Cl point to a violation of isobaric symmetry in the structure of these unbound nuclei. The two-proton decay has been identified in a transition region between simultaneous two-proton and sequential proton emissions from the (30)Ar ground state, which is characterized by an interplay of three-body and two-body decay mechanisms. The first hint of a fine structure of the two-proton decay of (30)Ar*(2(+)) has been obtained by detecting two decay branches into the ground and first-excited states of the (28)S fragment.

16.
Phys Rev Lett ; 113(11): 113001, 2014 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-25259973

RESUMO

The photoelectric effect has been studied in the regime of hard x rays and strong Coulomb fields via its time-reversed process of radiative recombination (RR). In the experiment, the relativistic electrons recombined into the 2p_{3/2} excited state of hydrogenlike uranium ions, and both the RR x rays and the subsequently emitted characteristic x rays were detected in coincidence. This allowed us to observe the coherence between the magnetic substates in a highly charged ion and to identify the contribution of the spin-orbit interaction to the RR process.

17.
Phys Rev Lett ; 113(13): 132501, 2014 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-25302882

RESUMO

The first determination of radii of point proton distribution (proton radii) of (12-17)B from charge-changing cross sections (σ(CC)) measurements at the FRS, GSI, Darmstadt is reported. The proton radii are deduced from a finite-range Glauber model analysis of the σ(CC). The radii show an increase from ¹³B to ¹7B and are consistent with predictions from the antisymmetrized molecular dynamics model for the neutron-rich nuclei. The measurements show the existence of a thick neutron surface with neutron-proton radius difference of 0.51(0.11) fm in ¹7B.

18.
Phys Rev Lett ; 112(13): 132502, 2014 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-24745409

RESUMO

We report on the first observation of the unbound proton-rich nucleus 15Ne. Its ground state and first excited state were populated in two-neutron knockout reactions from a beam of 500 MeV/u 17Ne. The 15Ne ground state is found to be unbound by 2.522(66) MeV. The decay proceeds directly to 13O with simultaneous two-proton emission. No evidence for sequential decay via the energetically allowed 2- and 1- states in 14F is observed. The 15Ne ground state is shown to have a strong configuration with two protons in the (sd) shell around 13O with a 63(5)% (1s1/2)2 component.

19.
Phys Rev Lett ; 110(12): 122502, 2013 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-25166798

RESUMO

Long-lived isomers in (212)Bi have been studied following (238)U projectile fragmentation at 670 MeV per nucleon. The fragmentation products were injected as highly charged ions into a storage ring, giving access to masses and half-lives. While the excitation energy of the first isomer of (212)Bi was confirmed, the second isomer was observed at 1478(30) keV, in contrast to the previously accepted value of >1910 keV. It was also found to have an extended Lorentz-corrected in-ring half-life >30 min, compared to 7.0(3) min for the neutral atom. Both the energy and half-life differences can be understood as being due a substantial, though previously unrecognized, internal decay branch for neutral atoms. Earlier shell-model calculations are now found to give good agreement with the isomer excitation energy. Furthermore, these and new calculations predict the existence of states at slightly higher energy that could facilitate isomer deexcitation studies.

20.
Phys Rev Lett ; 111(24): 242503, 2013 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-24483648

RESUMO

The E1 strength distribution in 68Ni has been investigated using Coulomb excitation in inverse kinematics at the R3B-LAND setup and by measuring the invariant mass in the one- and two-neutron decay channels. The giant dipole resonance and a low-lying peak (pygmy dipole resonance) have been observed at 17.1(2) and 9.55(17) MeV, respectively. The measured dipole polarizability is compared to relativistic random phase approximation calculations yielding a neutron-skin thickness of 0.17(2) fm. A method and analysis applicable to neutron-rich nuclei has been developed, allowing for a precise determination of neutron skins in nuclei as a function of neutron excess.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA