Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Tipo de documento
Intervalo de ano de publicação
1.
Eur J Neurosci ; 59(11): 3134-3146, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38602078

RESUMO

Early life stress (ELS) exposure alters stress susceptibility in later life and affects vulnerability to stress-related disorders, but how ELS changes the long-lasting responsiveness of the stress system is not well understood. Zebrafish provides an opportunity to study conserved mechanisms underlying the development and function of the stress response that is regulated largely by the neuroendocrine hypothalamus-pituitary-adrenal/interrenal (HPA/I) axis, with glucocorticoids (GC) as the final effector. In this study, we established a method to chronically elevate endogenous GC levels during early life in larval zebrafish. To this end, we employed an optogenetic actuator, beggiatoa photoactivated adenylyl cyclase, specifically expressed in the interrenal cells of zebrafish and demonstrate that its chronic activation leads to hypercortisolaemia and dampens the acute-stress evoked cortisol levels, across a variety of stressor modalities during early life. This blunting of stress-response was conserved in ontogeny at a later developmental stage. Furthermore, we observe a strong reduction of proopiomelanocortin (pomc)-expression in the pituitary as well as upregulation of fkbp5 gene expression. Going forward, we propose that this model can be leveraged to tease apart the mechanisms underlying developmental programming of the HPA/I axis by early-life GC exposure and its implications for vulnerability and resilience to stress in adulthood.


Assuntos
Glucocorticoides , Sistema Hipotálamo-Hipofisário , Larva , Optogenética , Peixe-Zebra , Animais , Optogenética/métodos , Glucocorticoides/metabolismo , Glucocorticoides/farmacologia , Sistema Hipotálamo-Hipofisário/metabolismo , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Sistema Hipófise-Suprarrenal/metabolismo , Sistema Hipófise-Suprarrenal/efeitos dos fármacos , Hidrocortisona/metabolismo , Estresse Psicológico/metabolismo , Adenilil Ciclases/metabolismo , Adenilil Ciclases/genética , Glândula Inter-Renal/metabolismo , Glândula Inter-Renal/efeitos dos fármacos , Pró-Opiomelanocortina/metabolismo , Pró-Opiomelanocortina/genética
2.
Nat Commun ; 13(1): 6663, 2022 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-36333314

RESUMO

Tight control of cell fate choices is crucial for normal development. Here we show that lamin A/C plays a key role in chromatin organization in embryonic stem cells (ESCs), which safeguards naïve pluripotency and ensures proper cell fate choices during cardiogenesis. We report changes in chromatin compaction and localization of cardiac genes in Lmna-/- ESCs resulting in precocious activation of a transcriptional program promoting cardiomyocyte versus endothelial cell fate. This is accompanied by premature cardiomyocyte differentiation, cell cycle withdrawal and abnormal contractility. Gata4 is activated by lamin A/C loss and Gata4 silencing or haploinsufficiency rescues the aberrant cardiovascular cell fate choices induced by lamin A/C deficiency. We uncover divergent functions of lamin A/C in naïve pluripotent stem cells and cardiomyocytes, which have distinct contributions to the transcriptional alterations of patients with LMNA-associated cardiomyopathy. We conclude that disruption of lamin A/C-dependent chromatin architecture in ESCs is a primary event in LMNA loss-of-function cardiomyopathy.


Assuntos
Cromatina , Lamina Tipo A , Humanos , Lamina Tipo A/metabolismo , Cromatina/metabolismo , Diferenciação Celular/genética , Células-Tronco Embrionárias/metabolismo , Miócitos Cardíacos/metabolismo
3.
Cancer Res ; 82(7): 1380-1395, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35105690

RESUMO

The activation and differentiation of cancer-associated fibroblasts (CAF) are involved in tumor progression. Here, we show that the tumor-promoting lipid mediator prostaglandin E2 (PGE2) plays a paradoxical role in CAF activation and tumor progression. Restricting PGE2 signaling via knockout of microsomal prostaglandin E synthase-1 (mPGES-1) in PyMT mice or of the prostanoid E receptor 3 (EP3) in CAFs stunted mammary carcinoma growth associated with strong CAF proliferation. CAF proliferation upon EP3 inhibition required p38 MAPK signaling. Mechanistically, TGFß-activated kinase-like protein (TAK1L), which was identified as a negative regulator of p38 MAPK activation, was decreased following ablation of mPGES-1 or EP3. In contrast with its effects on primary tumor growth, disruption of PGE2 signaling in CAFs induced epithelial-to-mesenchymal transition in cancer organoids and promoted metastasis in mice. Moreover, TAK1L expression in CAFs was associated with decreased CAF activation, reduced metastasis, and prolonged survival in human breast cancer. These data characterize a new pathway of regulating inflammatory CAF activation, which affects breast cancer progression. SIGNIFICANCE: The inflammatory lipid prostaglandin E2 suppresses cancer-associated fibroblast expansion and activation to limit primary mammary tumor growth while promoting metastasis.


Assuntos
Neoplasias da Mama , Fibroblastos Associados a Câncer , Carcinoma , Animais , Neoplasias da Mama/patologia , Fibroblastos Associados a Câncer/metabolismo , Carcinoma/patologia , Dinoprostona/metabolismo , Feminino , Fibroblastos/metabolismo , Humanos , Camundongos , Prostaglandina-E Sintases/genética , Prostaglandina-E Sintases/metabolismo , Prostaglandina-E Sintases/farmacologia
4.
Front Physiol ; 12: 710809, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34408666

RESUMO

The heart continually senses and responds to mechanical stimuli that balance cardiac structure and activity. Tensile forces, compressive forces, and shear stress are sensed by the different cardiac cell types and converted into signals instructing proper heart morphogenesis, postnatal growth, and function. Defects in mechanotransduction, the ability of cells to convert mechanical stimuli into biochemical signals, are implicated in cardiovascular disease development and progression. In this review, we summarize the current knowledge on how mechanical forces are transduced to chromatin through the tensed actomyosin cytoskeleton, the linker of nucleoskeleton and cytoskeleton (LINC) complex and the nuclear lamina. We also discuss the functional significance of the LINC complex in cardiovascular disease.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA