Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant Cell Rep ; 31(12): 2239-46, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22892682

RESUMO

KEY MESSAGE: The altered ultrastructure and composition of cuticular wax from 'glossy Newhall' (MT) fruits lead to its glossy phenotype. A novel mutant derived from the wild-type (WT) 'Newhall' navel orange (Citrus sinensis [L.] Osbeck cv. Newhall), named 'glossy Newhall' (MT), which produced much more glossy fruits that were easily distinguishable from the WT fruits was characterized in this report. The total wax loads of both WT and MT fruits varied considerably during the fruit development. The most abundant wax fraction of WT mature fruits was triterpenoids, followed by aldehydes, alkanes, fatty acids, primary alcohol and cholesterol. The total wax load in MT mature fruits was reduced by 44.2 % compared with WT. Except for the minor wax components of primary alcohol and cholesterol, the amounts of all major wax fractions in MT mature fruits were decreased in varying degrees. The major reduction occurred in aldehydes that decreased 96.4 % and alkanes that decreased 81.9 %, which was consistent with scanning electron micrographs of MT mature fruit surfaces that showed a severe loss of wax crystals. Hence, aldehydes and alkanes were suggested to be required for wax crystal formation in 'Newhall' navel orange fruits.


Assuntos
Citrus sinensis/química , Frutas/química , Frutas/ultraestrutura , Ceras/química , Aldeídos/química , Alcanos/química , Colesterol/química , Citrus sinensis/anatomia & histologia , Citrus sinensis/genética , Citrus sinensis/crescimento & desenvolvimento , Ácidos Graxos/química , Frutas/crescimento & desenvolvimento , Microscopia Eletrônica de Varredura , Fenótipo , Especificidade da Espécie , Triterpenos/química
2.
Polymers (Basel) ; 11(12)2019 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-31795517

RESUMO

Recently, the nanofiber materials derived from natural polymers instead of petroleum-based polymers by electrospinning have aroused a great deal of interests. The lignocellulosic biomass could not be electrospun into nanofiber directly due to its poor solubility. Here, sugarcane bagasse (SCB) was subjected to the homogeneous esterification with different anhydrides, and the corresponding esterified products (SCB-A) were obtained. It was found that the bead-free and uniform nanofibers were obtained via electrospinning even when the mass fraction of acetylated SCB was 70%. According to the thermogravimetric analyses, the addition of SCB-A could improve the thermal stability of the electrospun composite nanofibers. More importantly, in contrast to the pure polyacrylonitrile (PAN) based carbon nanofiber, the SCB-A based carbon nanofibers had higher electrical conductivity and the surface N element content. In addition, the superfine carbon nanofiber mats with minimum average diameter of 117.0 ± 13.7 nm derived from SCB-A were obtained, which results in a larger Brunauer-Emmett-Teller (BET) surface area than pure PAN based carbon nanofiber. These results demonstrated that the combination of the homogeneous esterification and electrospinning could be a feasible and potential way to produce the bio-based carbon nanofibers directly from lignocellulosic without component separation.

3.
Int J Biol Macromol ; 107(Pt A): 426-435, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28888549

RESUMO

The alcoholic depolymerization and Mannich reaction were conducted to improve the chemical activity of biorefinery technical lignins and introduce amino groups into lignins, respectively. To understand the chemical structural transformations and examine the reaction mechanism, GPC and solution-state NMR techniques were performed. Element analysis was also used to quantify the amount of amine groups. The NMR characterization the depolymerized lignins indicated of the depolymerization, demethoxylation, and bond cleavage of linkages occurred during the depolymerization process. Results showed that the depolymerization temperature instead of the addition of capping reagents was the main factor for improving the reactivity of lignin under the given conditions. The Mannich reaction was very selective, primarily occurred at H3,5 and G5 positions, and the H units present a higher chemical reactivity. It is believed that the understanding of the fundamental chemistry of lignin during depolymerization and Mannich reaction process will contribute to the extension of high value-added applications of biorefinery lignin.


Assuntos
Etanol/química , Lignina/química , Madeira/química , Aminação , Espectroscopia de Ressonância Magnética , Bases de Mannich/química , Estrutura Molecular , Polimerização
4.
J Agric Food Chem ; 55(6): 2399-406, 2007 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-17319683

RESUMO

Homogeneous modification of cellulose, isolated with 10% KOH from delignified sugarcane bagasse, was performed in room-temperature ionic liquid 1-allyl-3-methylinidazolium chloride with phthalic anhydride in the absence of catalyst. The results showed the degree of substitution of phthalated cellulosic derivatives, ranging from 0.10 to 0.73, increased with the increment of reaction temperature, reaction time, and the molar ratio of phthalic anhydride/anhydroglucose units in cellulose under the conditions given. The products were characterized by FT-IR and solid-state CP/MAS 13C NMR spectroscopy as well as thermal analysis, and the results revealed that the phthalation reaction at C-6, C-2, and C-3 positions of the cellulose all occurred. The thermal stability of the phthalated cellulose was found to decrease upon chemical modification. However, this thermal stability of the phthalated cellulose over 200 degrees C is rather satisfactory.


Assuntos
Celulose/química , Anidridos Ftálicos/química , Estabilidade de Medicamentos , Espectroscopia de Ressonância Magnética , Soluções , Temperatura
5.
Materials (Basel) ; 10(8)2017 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-28825640

RESUMO

Recently, more attentions have been focused on the exploration of hemicelluloses in the paper industry. In this work, xylan-grafted-polyacrylamide (xylan-g-PAM) biopolymers were synthesized by the graft copolymerization of xylan with acrylamide, and their interaction with fibers was also investigated to improve waste newspaper pulp properties with or without cationic fiber fines. The influences of synthesis conditions were studied on the grafting ratio and the grafting efficiency of biopolymers. Prepared biopolymers were characterized by FTIR, 13C NMR, TGA and rheology. It was found that the grafting of PAM on xylan was conductive to improve xylan properties, such as the solubility in water, rheological features, and thermal stability, and the maximum grafting ratio was achieved to 14.7%. Moreover, xylan-g-PAM could obviously enhance the mechanical properties of waste paper pulps. Xylan-g-PAM also played the dominant role in increasing the strength of paper in the combination with prepared cationic fine fibers. When the amounts of xylan-g-PAM and cationic fiber fines were 1.0 wt % and 0.5 wt %, the mechanical properties such as the tensile index was increased by 49.09%, tear index was increased by 36.54%, and the burst index was increased by 20.67%, when compared with the control handsheets. Therefore, xylan-g-PAM as the new biopolymer could be promising in the application of strength agents for the paper industry as well as cationic fiber fines.

6.
Bioresour Technol ; 244(Pt 1): 717-725, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28822283

RESUMO

In this study, bamboo (Phyllostachys pubescens) was successfully deconstructed using an integrated process (autohydrolysis and subsequent delignification). Xylooligosaccharides, high-purity lignin, and digestible substrates for producing glucose can be consecutively collected during the integrated process. The structural change and fate of lignin during autohydrolysis process was deeply investigated. Additionally, the structural characteristics and active functional groups of the lignin fractions obtained by these delignification processes were thoroughly investigated by NMR (2D-HSQC and 31P NMR) and GPC techniques. The chemical compositions (S, G, and H) and major linkages (ß-O-4, ß-ß, ß-5, etc.) were thoroughly assigned and the frequencies of the major lignin linkages were quantitatively compared. Considering the structural characteristics and molecular weights of the lignin as well as enzymatic saccharification ratio of the substrate, the combination of autohydrolysis and organic base-catalyzed ethanol pretreatment was deemed as a promising biorefinery mode in the future based on bamboo feedstock.


Assuntos
Lignina , Sasa/química , Etanol , Hidrólise , Peso Molecular , Compostos Orgânicos , Sasa/metabolismo
7.
Int J Biol Macromol ; 101: 747-757, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28363656

RESUMO

To better understand the variations of structural characteristics of lignin macromolecules during different growth years of Triploid of Populus tomentosa Carr, a novel lignin isolation procedure based on double ball-milling and enzymatic hydrolysis (DEL) was proposed in this study. The morphological distributions of lignin in the plant cell wall of these poplar wood samples were monitored by Confocal Raman Microscopy (CRM). The ultrahigh yields (105.1%-111.2%) of DELs were significantly higher than those (24.4-31.8%) of corresponding cellulolytic enzyme lignins (CELs). DELs and CELs were elaborately characterized by HPAEC, GPC, 2D-HSQC NMR and 31P NMR techniques, and NMR results showed that DEL samples possess similar structural features as compared to CEL counterparts except for the decreased S/G ratio and p-hydroxybenzoate (PB) as well as increased p-hydroxyphenyl units (H). There are no obvious differences in the structural characteristics except for high contents of PB and H units in DEL-1, as well as high S/G ratio and ß-O-4' linkages in DEL-5. It is believed that the DEL proposed in the present study can be used for characterizing the entire structural features of lignin macromolecules in the plant cell wall of different kinds of lignocellulosic biomass.


Assuntos
Lignina/química , Populus/química , Populus/genética , Triploidia , Hidrólise , Peso Molecular , Populus/crescimento & desenvolvimento , Madeira/química
8.
J Agric Food Chem ; 54(16): 5742-8, 2006 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-16881672

RESUMO

Cell walls of sugarcane bagasse were first delignified with chlorite followed by ultrasonic irradiation and then by two-step sequential extractions at 23 degrees C with 15 and 18% KOH for 2 h, 15 and 18% NaOH for 2 h, 8 and 10% KOH for 12 h, and 8 and 10% NaOH for 12 h and by a single one-stage isolation with 10% KOH for 16 h and with 10% NaOH for 16 h, which released 79.4, 81.8, 83.6, 85.7, 61.5, and 65.6% of the original hemicelluloses, and subsequently yielded 50.7, 49.5, 48.6, 47.8, 57.2, and 55.4% of the cellulose, respectively. The six cellulosic preparations were free of bound lignin and had a purity of 77.1-90.1% with the intrinsic viscosity (eta), viscosity average degree of polymerization, and molecular weight (M(w)) ranging from 534.1 to 631.6 mL g(-1), from 1858.1 to 2238.2 mL g(-1), and from 301000 to 362600 g mol(-1), respectively. The structural features of the isolated six cellulosic samples were comparatively examined by Fourier transform infrared and cross-polarization/magic angle spinning (13)C NMR spectroscopy and X-ray diffraction, and their thermal stability was investigated by using thermogravimetric analysis. It was found that all of the cellulosic preparations have the typical cellulose I structure but the crystallinity of the SCB cellulose was lower than that of flax, cotton, and kenaf.


Assuntos
Celulose/química , Celulose/isolamento & purificação , Saccharum/química , Cloretos , Hidróxidos , Espectroscopia de Ressonância Magnética , Peso Molecular , Polissacarídeos/análise , Compostos de Potássio , Hidróxido de Sódio , Espectroscopia de Infravermelho com Transformada de Fourier , Ultrassom , Viscosidade , Difração de Raios X
9.
J Agric Food Chem ; 62(15): 3446-52, 2014 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-24678805

RESUMO

Cellulose acetylation was investigated in dimethyl sulfoxide (DMSO) with isopropenyl acetate (IPA) as acetylating reagent and 1,8-diazabicyclo[5,4,0]undec-7-ene (DBU) as catalyst at 70-130 °C for 3-12 h. The degree of substitution (DS) of acetylated cellulose was comparatively determined by titration and ¹H NMR and confirmed by FT-IR analysis. The results indicated that per-O-acetylation was achieved at >90 °C for a relatively long duration. The three well-resolved peaks of carbonyl carbons in ¹³C NMR spectra also provided evidence of per-O-acetylation. The solubility of cellulose acetates in common organic solvents was examined, and the result showed that chloroform can be an alternative choice as a solvent for fully acetylated cellulose formed in this study besides DMSO. The intrinsic viscosity of acetylated cellulose solution implied almost no degradation of cellulose during acetylation in DMSO except at higher temperature (130 °C) for a long time.


Assuntos
Celulose/química , Dimetil Sulfóxido/química , Acetatos/química , Acetilação , Catálise , Esterificação
10.
J Agric Food Chem ; 62(3): 682-90, 2014 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-24387806

RESUMO

The preparation of xylan-graft-poly(ε-caprolactone) (xylan-g-PCL) copolymers was investigated by homogeneous ring-opening polymerization (ROP) in a dual-component system containing Lewis base LiCl and strong polar aprotic solvent dimethyl sulfoxide (DMSO). DMSO/LiCl acted as solvent, base, and catalyst for the ROP reaction. The effects of the parameters, including the reaction temperature, molar ratio of ε-caprolactone (ε-CL) to anhydroxylose units (AXU) in xylan, and reaction time, on the degree of substitution (DS) and weight percent of PCL side chain (WPCL) were investigated. The results showed that xylan-g-PCL copolymers with low DS in the range of 0.03-0.39 were obtained under the given conditions. The Fourier transform infrared spectroscopy (FTIR), (1)H nuclear magnetic resonance (NMR), (13)C NMR, (1)H-(1)H correlation spectroscopy (COSY), and (1)H-(13)C correlation two-dimensional (2D) NMR [heteronuclear single-quantum coherence (HSQC)] characterization provided more evidence of the attachment of side chains onto xylan. Only one ε-CL was confirmed to be attached onto xylan with each side chain. Integration of resonances assigned to the substituted C2 and C3 in the HSQC spectrum also indicated 69.23 and 30.77% of PCL side chains attached to AXU at C3 and C2 positions, respectively. Although the attachment of PCL onto xylan led to the decreased thermal stability of xylan, the loss of unrecovered xylan fractions with low molecular weight because of the high solubility of xylan in DMSO/LiCl resulted in the increased thermal stability of the samples. This kind of xylan derivative has potential application in environmentally friendly and biodegradable materials considering the good biodegradability of xylan and PCL.


Assuntos
Caproatos/química , Lactonas/química , Xilanos/química , Catálise , Dimetil Sulfóxido/química , Cloreto de Lítio/química , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Peso Molecular , Polimerização , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura
11.
J Agric Food Chem ; 59(16): 8691-701, 2011 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-21749036

RESUMO

Lignocellulose materials are potentially valuable resources for transformation into biofuels and bioproducts. However, their complicated structures make it difficult to fractionate them into cellulose, hemicelluloses, and lignin, which limits their utilization and economical conversion into value-added products. This study proposes a novel and feasible fractionation method based on complete dissolution of bagasse in 1-butyl-3-methylimidazolium chloride ([C(4)mim]Cl) followed by precipitation in acetone/water (9:1, v/v) and extraction with 3% NaOH solution. The ionic liquid [C(4)mim]Cl was easily recycled after concentration and treatment with acetonitrile. (1)H NMR analysis confirmed that there was no obvious difference between the recycled [C(4)mim]Cl and fresh material. Bagasse was fractionated with this method to 36.78% cellulose, 26.04% hemicelluloses, and 10.51% lignin, accounting for 47.17 and 33.85% of the original polysaccharides and 54.62% of the original lignin, respectively. The physicochemical properties of the isolated fractions were characterized by chemical analysis, high-performance anion exchange chromatography (HPAEC), gel permeation chromatography (GPC), Fourier transform infrared (FT-IR), and (1)H and 2D (13)C-(1)H correlation (HSQC) nuclear magnetic resonance spectroscopy. The results showed that the acetone-soluble lignin and alkaline lignin fractions had structures similar to those of milled wood lignin (MWL). The easy extraction of the noncellulose components from homogeneous bagasse solution and amorphous regenerated materials resulted in the relatively high purity of cellulosic fraction (>92%). The hemicellulosic fraction was mainly 4-O-methyl-D-glucuronoxylans with some α-L-arabinofuranosyl units substituted at C-2 and C-3.


Assuntos
Celulose/isolamento & purificação , Lignina/isolamento & purificação , Polissacarídeos/isolamento & purificação , Celulose/química , Fracionamento Químico/métodos , Fenômenos Químicos , Concentração de Íons de Hidrogênio , Líquidos Iônicos , Lignina/química
12.
J Agric Food Chem ; 57(5): 1814-20, 2009 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-19199606

RESUMO

The homogeneous chemical modification of cellulose with succinic anhydride was investigated in a solvent system containing 1-butyl-3-methylimidazolium chloride ionic liquid and dimethylsulfoxide using N-bromosuccinimide (NBS) as a catalyst. The results showed that the degree of substitution of the succinylated cellulosic samples, in the range of 0.24-2.31, noticeably increased as compared with the products without any catalysts, indicating that NBS was a novel efficient catalyst for cellulose succinoylation in ionic liquids. Fourier transform infrared and solid-state cross-polarization/magic angle spinning (13)C NMR spectroscopies also provided evidence of succinoylation reaction. The results indicated that the reaction of hydroxyl groups at C-6, C-2, and C-3 positions in cellulose occurred. The thermal stability of the succinylated cellulose was found to decrease upon chemical modification.


Assuntos
Bromosuccinimida/química , Celulose/química , Líquidos Iônicos/química , Anidridos Succínicos/química , Catálise , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA