Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
J Transl Med ; 22(1): 282, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38491529

RESUMO

BACKGROUND: Oral inflammatory diseases are localized infectious diseases primarily caused by oral pathogens with the potential for serious systemic complications. However, publicly available datasets for these diseases are underutilized. To address this issue, a web tool called OralExplorer was developed. This tool integrates the available data and provides comprehensive online bioinformatic analysis. METHODS: Human oral inflammatory disease-related datasets were obtained from the GEO database and normalized using a standardized process. Transcriptome data were then subjected to differential gene expression analysis, immune infiltration analysis, correlation analysis, pathway enrichment analysis, and visualization. The single-cell sequencing data was visualized as cluster plot, feature plot, and heatmaps. The web platform was primarily built using Shiny. The biomarkers identified in OralExplorer were validated using local clinical samples through qPCR and IHC. RESULTS: A total of 35 human oral inflammatory disease-related datasets, covering 6 main disease types and 901 samples, were included in the study to identify potential molecular signatures of the mechanisms of oral diseases. OralExplorer consists of 5 main analysis modules (differential gene expression analysis, immune infiltration analysis, correlation analysis, pathway enrichment analysis and single-cell analysis), with multiple visualization options. The platform offers a simple and intuitive interface, high-quality images for visualization, and detailed analysis results tables for easy access by users. Six markers (IL1ß, SRGN, CXCR1, FGR, ARHGEF2, and PTAFR) were identified by OralExplorer. qPCR- and IHC-based experimental validation showed significantly higher levels of these genes in the periodontitis group. CONCLUSIONS: OralExplorer is a comprehensive analytical platform for oral inflammatory diseases. It allows users to interactively explore the molecular mechanisms underlying the action and regression of these diseases. It also aids dental researchers in unlocking the potential value of transcriptomics data related to oral diseases. OralExplorer can be accessed at https://smuonco.shinyapps.io/OralExplorer/  (Alternate URL: http://robinl-lab.com/OralExplorer ).


Assuntos
Biologia Computacional , Software , Humanos , Biologia Computacional/métodos , Perfilação da Expressão Gênica/métodos , Transcriptoma/genética , Bases de Dados Factuais , Fatores de Troca de Nucleotídeo Guanina Rho
2.
FASEB J ; 37(6): e22947, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37199646

RESUMO

The relationship of obesity and osteoporosis has been widely studied over the past years. However, the implications of obesity for bone health remain controversial, and the underlying molecular mechanism is not yet fully understood. This study demonstrated that high-fat diet-induced obesity leads to significantly decreased bone volume/tissue volume (BV/TV), trabecular number (Tb.N), and cortical thickness (Ct.Th) of male rat femur after mechanical loading effects of body weight were controlled. HFD-induced obese rats exhibited attenuated expression of ferroptosis inhibitory protein SLC7A11 and GPX4 in bone tissues, which was correlated with elevated serum TNF-α concentration. Ferroptosis inhibitor administration could effectively rescue decreased osteogenesis-associated type H vessels and osteoprogenitors, and downregulate serum levels of TNF-α to ameliorate bone loss in obese rats. Since ferroptosis and TNF-α both affect bone and vessel formation, we further investigated the interaction between ferroptosis and TNF-α, and its impact in osteogenesis and angiogenesis in vitro. In human osteoblast-like MG63 and umbilical vein endothelial cells (HUVEC), TNF-α/TNFR2 signaling promoted cystine uptake and GSH biosynthesis to provide protection against low-dose ferroptosis inducer erastin. While, TNF-α/TNFR1 facilitated ferroptosis in the presence of high-dose erastin through ROS accumulation. Moreover, TNF-α regulated ferroptosis-induced osteogenic and angiogenic dysfunctions based on its ferroptosis regulatory role. Meanwhile, ferroptosis inhibitors could reduce intracellular ROS overproduction and enhance osteogenesis and angiogenesis in TNF-α-treated MG63 and HUVECs. This study revealed the interaction between ferroptosis and TNF-α and its impact in osteogenesis and angiogenesis, which provides new insights into the pathogenesis and regenerative therapy of obesity-related osteoporosis.


Assuntos
Ferroptose , Osteoporose , Ratos , Masculino , Humanos , Animais , Fator de Necrose Tumoral alfa/metabolismo , Células Endoteliais/metabolismo , Espécies Reativas de Oxigênio , Osteoporose/metabolismo , Obesidade/metabolismo
3.
Pharmacol Res ; 202: 107141, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38490314

RESUMO

Osteoarthritis (OA) is a degenerative disease characterised by articular cartilage destruction, and its complex aetiology contributes to suboptimal clinical treatment outcomes. A close association exists between glucose metabolism dysregulation and OA pathogenesis. Owing to the unique environment of low oxygen and glucose concentrations, chondrocytes rely heavily on their glycolytic capacity, exhibiting distinct spatiotemporal differences. However, under pathological stimulation, chondrocytes undergo excessive glycolytic activity while mitochondrial respiration and other branches of glucose metabolism are compromised. This metabolic change induces cartilage degeneration by reprogramming the inflammatory responses. Sirtuins, a highly conserved family of nicotinamide adenine dinucleotide (NAD+)-dependent deacetylases, regulate glucose metabolism in response to energy fluctuations in different cellular compartments,alleviating metabolic stress. SIRT1, the most extensively studied sirtuin, participates in maintaining glucose homeostasis in almost all key metabolic tissues. While actively contributing to the OA progression and displaying diverse biological effects in cartilage protection, SIRT1's role in regulating glucose metabolism in chondrocytes has not received sufficient attention. This review focuses on discussing the beneficial role of SIRT1 in OA progression from a metabolic regulation perspective based on elucidating the primary characteristics of chondrocyte glucose metabolism. We also summarise the potential mechanisms and therapeutic strategies targeting SIRT1 in chondrocytes to guide clinical practice and explore novel therapeutic directions.


Assuntos
Glucose , Osteoartrite , Sirtuína 1 , Animais , Humanos , Cartilagem Articular/patologia , Glucose/metabolismo , Osteoartrite/metabolismo , Sirtuína 1/metabolismo , Sirtuínas/metabolismo
4.
Orthod Craniofac Res ; 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39169632

RESUMO

OBJECTIVES: This study investigated the effect of additive manufacturing (AM) methods on the slot height dimensions and accuracy of 3D-printed orthodontic brackets. METHODS: A 3D model of a standard Mclaughlin Bennett Trevisi bracket was used as a reference to print the ceramic bracket in a 90° orientation using two representative AM methods: digital light processing (DLP) and material jetting (MJ). The dimensional accuracy and slot heights were determined using a scanning electron microscope and an optical scanner. Also, all specimens were analysed using the Geomagic Control X 3D inspection software. The root mean square (RMS) values were used for trueness and precision assessment. Statistical analyses were performed using an independent sample t-test. RESULTS: Slot height dimensions, trueness RMS, and precision RMS were statistically affected by different AM methods (p < .01). There was a significant difference between the different printing methods, with DLP meeting the tolerance requirements (mean slot height = 0.557 ± 0.018 mm) and MJ being slightly below them (mean slot height = 0.544 ± 0.021 mm). However, MJ significantly outperformed DLP in terms of accuracy. Among the two printing methods, MJ was associated with higher trueness (RMS = 0.025 ± 0.004 mm) and precision (RMS = 0.038 ± 0.005 mm). CONCLUSIONS: Both tested AM methods yielded clinically acceptable outcomes, with the RMS range set to ±100 µm and the slot height tolerance established at 0.549-0.569 mm. The MJ technology achieved the highest accuracy.

5.
Nano Lett ; 22(10): 3889-3896, 2022 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-35507005

RESUMO

Nanoindentation based on atomic force microscopy (AFM) can measure the elasticity of biomaterials and cells with high spatial resolution and sensitivity, but relating the data to quantitative mechanical properties depends on information on the local contact, which is unclear in most cases. Here, we demonstrate nonlocal deformation sensing on biorelevant soft matters upon AFM indentation by using nitrogen-vacancy centers in nanodiamonds, providing data for studying both the elasticity and capillarity without requiring detailed knowledge about the local contact. Using fixed HeLa cells for demonstration, we show that the apparent elastic moduli of the cells would have been overestimated if the capillarity was not considered. In addition, we observe that both the elastic moduli and the surface tensions are reduced after depolymerization of the actin cytoskeleton in cells. This work demonstrates that the nanodiamond sensing of nonlocal deformation with nanometer precision is particularly suitable for studying mechanics of soft biorelevant materials.


Assuntos
Nanodiamantes , Ação Capilar , Elasticidade , Células HeLa , Humanos , Microscopia de Força Atômica
6.
Int J Mol Sci ; 24(4)2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36835229

RESUMO

Osteoimmunology mediators are critical to balance osteoblastogenesis and osteoclastogenesis to maintain bone homeostasis. A lot of the osteoimmunology mediators are regulated by interleukin-20 (IL-20). However, little is known about the role of IL-20 in bone remodeling. Here, we showed that IL-20 expression was correlated with osteoclast (OC) activity in remodeled alveolar bone during orthodontic tooth movement (OTM). Ovariectomize (OVX) in rats promoted OC activity and enhanced IL-20 expression, while blocking OC inhibited IL-20 expression in osteoclasts. In vitro, IL-20 treatment promoted survival, inhibited apoptosis of the preosteoclast at the early stages of osteoclast differentiation, and boosted the formation of osteoclasts and their bone resorption function at the late stages. More importantly, anti-IL-20 antibody treatment blocked IL-20-induced osteoclastogenesis and the subsequent bone resorption function. Mechanistically, we showed that IL-20 synergistically acts with RANKL to activate the NF-κB signaling pathway to promote the expression of c-Fos and NFATc1 to promote osteoclastogenesis. Moreover, we found that local injection of IL-20 or anti-IL-20 antibody enhanced osteoclast activity and accelerated OTM in rats, while blocking IL-20 reversed this phenomenon. This study revealed a previously unknown role of IL-20 in regulating alveolar bone remodeling and implies the application of IL-20 to accelerated OTM.


Assuntos
Remodelação Óssea , Reabsorção Óssea , Diferenciação Celular , Osteoclastos , Animais , Ratos , Reabsorção Óssea/metabolismo , Interleucinas/metabolismo , NF-kappa B/metabolismo , Fatores de Transcrição NFATC/metabolismo , Osteoclastos/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ligante RANK/metabolismo
7.
Clin Oral Investig ; 26(4): 3747-3764, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35029749

RESUMO

OBJECTIVES: Improper orthodontic force often causes root resorption or destructive bone resorption. There is evidence that T helper 17 (Th17) cells and regulatory T (Treg) cells may be actively involved in bone remodeling during tooth movement. In a combination of in vitro and in vivo studies, we investigated the effect of human periodontal ligament cells (hPDLCs) on Th17/Treg cells under different orthodontic forces and corticotomy. MATERIAL AND METHODS: hPDLCs were cultured in vitro and subjected to different mechanical forces. The expression of interleukin (IL)-6 and transforming growth factor (TGF)-ß in the supernatant and the mRNA levels of hypoxia inducible factor (HIF)-1α, Notch1, and TGF-ß in hPDLCs were investigated. Supernatants were collected and co-cultured with activated CD4+T cells, and the differentiation of Th17/Treg cells was analyzed by flow cytometry. We also established an animal model of tooth movement with or without corticotomy. The tooth movement distance, alveolar bone height, and root resorption were analyzed using micro-computed tomography. Expression of interleukin (IL)-17A, forkhead Box P3 (Foxp3), and IL-6 were analyzed using immunohistochemistry, while osteoclasts were evaluated by tartrate-resistant acid phosphatase (TRAP) staining. The mRNA levels of IL-17A, IL-6, Foxp3, IL-10, HIF-1α, notch1, and C-X-C motif chemokine ligand 12 (CXCL12) in alveolar bone and gingiva were investigated. RESULTS: Heavy force repressed cell viability and increased the mortality rate of hPDLCs; it also improved the expression of IL-6, declined the expression of TGF-ß, and promoted the mRNA expression level of HIF-1α. The expression of TGF-ß and Notch1 mRNA decreased and then increased. The supernatant of hPDLCs under heavy force promotes the polarization of Th17 cells. The heavy force caused root resorption and decreased alveolar bone height and increased the positive area of IL-17A immunohistochemical staining and the expression of IL-17A, IL-6, HIF-1α, and Notch1 mRNA. Corticotomy accelerated tooth movement, increased the proportion of Foxp3-positive cells, and up-regulated the expression of Foxp3, IL-10, and CXCL12 mRNA. CONCLUSIONS: During orthodontic tooth movement, the heavy force causes root resorption and inflammatory bone destruction, which could be associated with increased expression of Th17 cells and IL-6. Corticotomy can accelerate tooth movement without causing root resorption and periodontal bone loss, which may be related to the increased expression of Treg cells. CLINICAL RELEVANCE: Altogether, this report provides a new perspective on the prevention of inflammatory injury via the regulation of Th17/Treg cells in orthodontics.


Assuntos
Perda do Osso Alveolar , Linfócitos T Reguladores , Perda do Osso Alveolar/prevenção & controle , Animais , Diferenciação Celular , Homeostase , Ligamento Periodontal , Linfócitos T Reguladores/metabolismo , Células Th17/metabolismo , Técnicas de Movimentação Dentária , Microtomografia por Raio-X
8.
Nano Lett ; 21(8): 3393-3400, 2021 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-33847115

RESUMO

Correlated translation-orientation tracking of single particles can provide important information for understanding the dynamics of live systems and their interaction with the probes. However, full six-dimensional (6D) motion tracking has yet to be achieved. Here, we developed synchronized 3D translation and 3D rotation tracking of single diamond particles based on nitrogen-vacancy center sensing. We first performed 6D tracking of diamond particles attached to a giant plasma membrane vesicle to demonstrate the method. Quantitative analysis of diamond particles' motion allowed elimination of the geometric effect and revealed the net rotation on the vesicle. 6D tracking was then applied to measure live cell dynamics. Motion characteristics of nanodiamonds on cell membranes under various controlled physiological conditions suggest that the nanodiamonds' rotation is associated with cell metabolic activities. Our technique extends the toolbox of single particle tracking and provides a unique solution to problems where correlated analysis of translation and rotation is critical.


Assuntos
Nanodiamantes , Diamante , Nitrogênio , Rotação
9.
Scand J Immunol ; 91(5): e12874, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32090353

RESUMO

The immune and skeletal systems share common mechanisms, and the crosstalk between the two has been termed osteoimmunology. Osteoimmunology mainly focuses on diseases between the immune and bone systems including bone loss diseases, and imbalances in osteoimmune regulation affect skeletal homeostasis between osteoclasts and osteoblasts. The immune mediator interleukin-20 (IL-20), a member of the IL-10 family, enhances inflammation, chemotaxis and angiogenesis in diseases related to bone loss. However, it is unclear how IL-20 regulates the balance between osteoclastogenesis and osteoblastogenesis; therefore, we explored the mechanisms by which IL-20 affects bone mesenchymal stem cells (BMSCs) in osteoclastogenesis in primary cells during differentiation, proliferation, apoptosis and signalling. We initially found that IL-20 differentially regulated preosteoclast proliferation and apoptosis; BMSC-conditioned medium (CM) significantly enhanced osteoclast formation and bone resorption, which was dose-dependently regulated by IL-20; IL-20 inhibited OPG expression and promoted M-CSF, RANKL and RANKL/OPG expression; and IL-20 differentially regulated the expression of osteoclast-specific gene and transcription factors through the OPG/RANKL/RANK axis and the NF-kB, MAPK and AKT pathways. Therefore, IL-20 differentially regulates BMSCs in osteoclastogenesis and exerts its function by activating the OPG/RANKL/RANK axis and the NF-κB, MAPK and AKT pathways, which make targeting IL-20 a promising direction for targeted regulation in diseases related to bone loss.


Assuntos
Interleucinas/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Osteoprotegerina/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ligante RANK/metabolismo , Receptor Ativador de Fator Nuclear kappa-B/metabolismo , Transdução de Sinais , Animais , Apoptose/genética , Diferenciação Celular , Proliferação de Células , Regulação da Expressão Gênica , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Osteogênese/genética , Ratos
10.
Orthod Craniofac Res ; 22(4): 259-269, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31323701

RESUMO

The aim of this study was to investigate the external root resorption in participants receiving clear aligners and compare it with those treated with fixed appliances. Systematic review with meta-analysis. Electronic and manual search were performed, and specific inclusion and exclusion criteria were used. Data extraction and analysis were conducted by two investigators independently. The original outcome underwent statistical pooling by Review Manager 5. The quality of studies was assessed by ROBINS-I tool. A total of 11 studies were included for qualitative analysis (six in moderate risk of bias while another five in serious risk of bias), and three of them were statistically pooled in meta-analysis. The external root resorption in treatment with clear aligners was significantly lower than that with fixed appliances (SMD = -0.65, 95% CI [-0.74, -0.55], P < .01). Subgroup analysis on each quadrant of incisors was consistent with the former result. Current evidences suggest that clear aligners might not avoid root resorption, but the incidence and severity of resorption could both be lower compared with results reported by treatment with fixed appliances.


Assuntos
Reabsorção da Raiz , Humanos , Incisivo , Aparelhos Ortodônticos , Aparelhos Ortodônticos Fixos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA