Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
Electrophoresis ; 45(5-6): 357-368, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38044267

RESUMO

The spatiotemporal accuracy of microscale magnetophoresis has improved significantly over the course of several decades of development. However, most of the studies so far were using magnetic microbead composed of nanosphere particle for magnetophoretic actuation purpose. Here, we developed an in-house method for magnetic sample analysis called quadrupole magnetic steering control (QMSC). QMSC was used to study the magnetophoretic behavior of polystyrene microbeads decorated with iron oxide nanospheres-coated polystyrene microbeads (IONSs-PS) and iron oxide nanorods-coated polystyrene microbeads (IONRs-PS) under the influence of a quadrupole low field gradient. During a 4-s QMSC experiment, the IONSs-PS and IONRs-PS were navigated to perform 180° flip and 90° turn formations, and their kinematic results (2 s before and 2 s after the flip/turn) were measured and compared. The results showed that the IONRs-PS suffered from significant kinematic disproportion, translating a highly uneven amount of kinetic energy from the same magnitude of magnetic control. Combining the kinematic analysis, transmission electron microscopy micrographs, and vibrating sample magnetometry measurements, it was found that the IONRs-PS experienced higher fluid drag force and had lower consistency than the IONSs-PS due to its extensive open fractal nanorod structure on the bead surface and uneven magnetization, which was attributed to its ferrimagnetic nature.


Assuntos
Compostos Férricos , Nanosferas , Nanotubos , Microesferas , Poliestirenos/química , Nanotubos/química
2.
Langmuir ; 37(30): 9192-9201, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34255525

RESUMO

The changes in the transport behavior of a microswimmer before and after cargo loading are crucial to understanding and control of the motion of a biohybrid microbot. In this work, we show the change in swimming behavior of biflagellated microalgae Chlamydomonas reinhardtii picking up a 4.5 µm polystyrene microbead upon collision. The microswimmer changed from linear forward motion into helical motion upon the attachment of the cargo and swam with a decreased swimming velocity. We revealed the helical motion of the microswimmer upon cargo loading due to suppression of flagella by image analysis of magnified time-lapse images of C. reinhardtii with one microbead attached at the anterior end (between the flagella). Furthered suppression on the flagellum imposed by the loading of the second cargo has led to increased oscillation per displacement traveled and decreased swimming velocity. Moreover, the microswimmer with a microbead attached at the posterior end swam with swimming velocity close to free swimming microalgae and did not exhibit helical swimming behavior. The experimental results and analysis showed that the loading location of the cargo has a great influence over the swimming behavior of the microswimmer. Furthermore, the work balance calculation and mathematical analysis based on Lighthill's model are well consistent with our experimental findings.


Assuntos
Chlamydomonas reinhardtii , Flagelos , Humanos , Movimento (Física) , Natação
3.
Crit Rev Food Sci Nutr ; 60(14): 2353-2368, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31298036

RESUMO

Aptamers, referring to single-stranded DNA or RNA molecules can specifically recognize and bind to their targets. Based on their excellent specificity, sensitivity, high affinity, and simplicity of modification, aptamers offer great potential for pathogen detection and biomolecular screening. This article reviews aptamer screening technologies and aptamer application technologies, including gold-nanoparticle lateral flow assays, fluorescence assays, electrochemical assays, colorimetric assays, and surface-enhanced Raman assays, in the detection of foodborne pathogens. Although notable progress (more rapid, sensitive, and accurate) has been achieved in the field, challenges and drawbacks in their applications still remain to be overcome.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , DNA , Microbiologia de Alimentos , Ouro , Nanopartículas
4.
Chembiochem ; 19(7): 654-659, 2018 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-29334175

RESUMO

2,5-Furandicarboxylic acid (FDCA) is a bio-based platform chemical for the production of polyethylene furanoate (PEF) and other valuable furanic chemicals. A magnetic laccase catalyst with (2,2,6,6-tetramethyl-piperidin-1-yl)oxyl (TEMPO) as the mediator has the remarkable capability of oxidizing 5-hydroxymethylfurfural (HMF) to 2,5-furandicarboxylic acid (FDCA). Under optimal reaction conditions, a quantitative yield (90.2 %) of FDCA with complete HMF conversion was obtained after 96 h of reaction. More importantly, the magnetic laccase catalyst exhibited good recyclability and stability, maintaining 84.8 % of its original activity following six reuse cycles. This is the first report on the efficient catalytic oxidation of HMF to FDCA by using an immobilized enzyme catalyst.


Assuntos
Ácidos Dicarboxílicos/síntese química , Enzimas Imobilizadas/química , Furaldeído/análogos & derivados , Furanos/síntese química , Lacase/química , Nanopartículas de Magnetita/química , Biocatálise , Óxidos N-Cíclicos/química , Furaldeído/química , Química Verde/métodos , Oxirredução , Dióxido de Silício/química
5.
Langmuir ; 34(27): 7971-7980, 2018 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-29882671

RESUMO

An artificial magnetotactic microbot was created by integrating the microalgal cell with magnetic microbead for its potential application as biomotor in microscale environment. Here, we demonstrate the remote magnetotactic control of the microbot under a low gradient magnetic field (<100 T/m). We characterize the kinematic behavior of the microbots carrying magnetic microbeads of two different sizes, with diameter of 2 and 4.5 µm, in the absence and presence of magnetic field. In the absence of magnetic field, we observed the microbot showed a helical motion as a result of the misalignment between the thrust force and the symmetry axis after the attachment. The microbot bound with a larger magnetic microbead moved with higher translational velocity but rotated slower about its axis of rotation. The viscous force was balanced by the thrust force of the microbot, resulting in a randomized swimming behavior of the microbot at its terminal velocity. Meanwhile, under the influence of a low gradient magnetic field, we demonstrated that the directional control of the microbot was based on following principles: (1) magnetophoretic force was insignificant on influencing its perpendicular motion and (2) its parallel motion was dependent on both self-swimming and magnetophoresis, in which this cooperative effect was a function of separation distance from the magnet. As the microbot approached the magnet, the magnetophoretic force suppressed its self-swimming behavior, leading to a positive magnetotaxis of the microbot toward the source of magnetic field. Our experimental results and kinematic analysis revealed the contribution of mass density variation of particle-and-cell system on influencing its dynamical behavior.

6.
Bioprocess Biosyst Eng ; 39(7): 1041-9, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26971792

RESUMO

An efficient strategy for laccase production in Trametes versicolor cultures was developed using vanillic acid as the inducer. The optimized vanillic acid treatment strategy consisted of exposing 2-day-old mycelia cultures to 80 mg/L vanillic acid. After 4 days, laccase activity of 588.84 U/L was achieved in flasks which represented a 1.79-fold increase compared to the control. In 200-L airlift bioreactor, the maximal laccase activity reached up to 785.12 U/L using the optimized vanillic acid treatment strategy. The zymograms of culture supernatants revealed three bands with laccase activity, among which Lac1 and Lac2 were abundant laccase isoforms constitutively expressed, and Lac3 was an inducible isozyme by vanillic acid. The results of real-time quantitative PCR showed that the transcription level of lcc in T. versicolor cultures grown with vanillic acid for 7 days was about 5.64-fold greater than that without vanillic acid in flasks. In 200-L airlift bioreactor cultures of T. versicolor with addition of vanillic acid, the transcript level of lcc at day 7 was 2.62-fold higher than that in flasks with vanillic acid due to the good mass transfer and oxygen supply in the bioreactor system. This study provides a basis for understanding the induction mechanism of vanillic acid for laccase production and has good potential for industrial applications.


Assuntos
Lacase/biossíntese , Trametes/efeitos dos fármacos , Ácido Vanílico/farmacologia , Biomassa , Reatores Biológicos , Eletroforese em Gel de Poliacrilamida Nativa , Reação em Cadeia da Polimerase em Tempo Real , Trametes/metabolismo
7.
Chirality ; 27(3): 199-204, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25482205

RESUMO

Novel magnetic cross-linked lipase aggregates were fabricated by immobilizing the cross-linked lipase aggregates onto magnetic particles with a high number of -NH2 terminal groups using p-benzoquinone as the cross-linking agent. At the optimal fabrication conditions, 100% of immobilization efficiency and 139% of activity recovery of the magnetic cross-linked lipase aggregates were achieved. The magnetic cross-linked lipase aggregates were able to efficiently resolve (R, S)-2-octanol, and retained 100% activity and 100% enantioselectivity after 10 cycles of reuse, whereas the cross-linked lipase aggregates only retained about 50% activity and 70% enantioselectivity due to insufficient cross-linking. These results provide a great potential for industrial applications of the magnetic cross-linked lipase aggregates.


Assuntos
Reagentes de Ligações Cruzadas/química , Lipase/química , Magnetismo , Octanóis/química , Agregados Proteicos , Catálise , Estereoisomerismo , Fatores de Tempo
8.
Bioprocess Biosyst Eng ; 38(4): 651-9, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25326062

RESUMO

An efficient induction strategy that consisted of multiple additions of small doses of isopropyl-ß-D-thiogalactopyranoside (IPTG) in the early cell growth phase was developed for enhancing Pfu DNA polymerase production in Escherichia coli. In comparison to the most commonly used method of a single induction of 1 mM IPTG, the promising induction strategy resulted in an increase in the Pfu activity of 13.5% in shake flasks, while simultaneously decreasing the dose of IPTG by nearly half. An analysis of the intracellular IPTG concentrations indicated that the cells need to maintain an optimum intracellular IPTG concentration after 6 h for efficient Pfu DNA polymerase production. A significant increase in the Pfu DNA polymerase activity of 31.5% under the controlled dissolved oxygen concentration of 30% in a 5 L fermentor was achieved using the multiple IPTG induction strategy in comparison with the single IPTG induction. The induction strategy using multiple inputs of IPTG also avoided over accumulation of IPTG and reduced the cost of Pfu DNA polymerase production.


Assuntos
DNA Polimerase Dirigida por DNA/biossíntese , Escherichia coli/genética , Microbiologia Industrial , Reatores Biológicos , Escherichia coli/metabolismo , Fermentação , Regulação Bacteriana da Expressão Gênica , Isopropiltiogalactosídeo/química , Oxigênio/química , Pyrococcus furiosus/enzimologia , Proteínas Recombinantes/biossíntese
9.
Bioprocess Biosyst Eng ; 38(10): 1973-81, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26178243

RESUMO

Chitosan multiple addition strategy was developed to improve laccase production from Trametes versicolor cultures. The optimized multiple addition strategy was carried out by two-time addition of 0.1 g L(-1) chitosan to a 2-day-old culture media, with 24-h interval between the treatments. Under these conditions, laccase activity of 644.9 U l(-1) was achieved on the seventh day and laccase production was improved by 93.5 % higher than the control. Chitosan treatment increased reactive oxygen species generation and extracellular protein concentration in the treated mycelia. In contrast, the inducer inhibited the mycelia growth. The result of the quantitative reverse transcription polymerase chain reaction showed that the copy number of the laccase gene transcript increased by 16.7-fold in the treated mycelia relative to the control. This study provides insight into some of the intrinsic metabolic processes involved in the upregulation of laccase production in the presence of chitosan inducer in fungal culture.


Assuntos
Quitosana/administração & dosagem , Lacase/biossíntese , Lacase/química , Espécies Reativas de Oxigênio/metabolismo , Trametes/efeitos dos fármacos , Trametes/enzimologia , Relação Dose-Resposta a Droga , Ativação Enzimática/efeitos dos fármacos , Estabilidade Enzimática/efeitos dos fármacos
10.
Physiol Plant ; 150(4): 505-16, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24661321

RESUMO

Dietary consumption of functional foods enriched in anthocyanins benefit for human health by protection against far-ranging human diseases. Delphinidin-derived anthocyanins (valuable as blue pigments and antioxidants) are accumulated specifically in the fruits of Lycium ruthenicum but not in the fruits of Lycium barbarum, suggesting the differences of anthocyanin biosynthesis between the two species. In this study, anthocyanin profiling confirmed that anthocyanins were increasingly accumulated during fruit ripening in L. ruthenicum, and sharply increased at full expanded mature fruit, while no anthocyanin were detected at any stage of L. barbarum fruit development. Several genes involved in anthocyanin biosynthesis were characterized in L. ruthenicum and L. barbarum fruits. Expression profiling of these genes during fruit development showed a significant positive correlation between transcript abundance and anthocyanin accumulation in L. ruthenicum fruit. Meanwhile, transcripts in L. barbarum fruit were either undetectable or were downregulated during fruit ripening, before increasing slightly in the final stages of maturation. In addition, the ratio of LrF3'5H/LrF3'H transcription showed a gradual increase before 6 days after breaker (DAB) and a sharp enhancement at 10 DAB. Our results suggest that the expression patterns of both regulatory and structural genes and the transcriptional ratio of branch-node structural genes F3'5'H/F3'H may determine the phenotypic difference in anthocyanin biosynthesis between L. ruthenicum and L. barbarum fruits.


Assuntos
Antocianinas/biossíntese , Frutas/metabolismo , Lycium/metabolismo , Proteínas de Plantas/metabolismo , Aciltransferases/genética , Aciltransferases/metabolismo , Sequência de Aminoácidos , Vias Biossintéticas/genética , Análise por Conglomerados , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Frutas/genética , Frutas/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Lycium/genética , Lycium/crescimento & desenvolvimento , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Dados de Sequência Molecular , Filogenia , Proteínas de Plantas/classificação , Proteínas de Plantas/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , Especificidade da Espécie
11.
Front Oncol ; 14: 1364997, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38887238

RESUMO

Objectives: Medical research continues to be extensively devoted to investigating the pathogenesis and treatment approaches of hereditary renal cancer. By aspect including researchers, institutions, countries, journals, and keywords, we conduct a bibliometric analysis of the literature pertaining to hereditary renal cancer over the last 23 years. Methods: From the Web of Science Core Collection, we conducted a search for publications published between January 1, 2000 and November 28, 2023. Reviews and original articles were included. Results: A cumulative count of 2,194 publications met the specified criteria for inclusion. The studies of the included articles involved a collective of 2,402 institutions representing 80 countries. Notably, the United States exhibited the highest number of published documents, constituting approximately 45.49% of the total. The preeminent institution in this discipline is the National Cancer Institute (NCI), which maintains a publication volume of 8.98%. In addition to being the most prolific author (125 publications), Linehan WM's works received the highest number of citations (11,985). In a comprehensive count, 803 journals have published related articles. In the top 10 most recent occurrences were the terms "hereditary leiomyomatosis" and "fumarate hydratase." Conclusion: This is the first bibliometric analysis of the literature on hereditary renal cancer. This article offers a thorough examination of the present status of investigations concerning hereditary renal cancer during the previous 23 years.

12.
Acta Biomater ; 175: 341-352, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38122883

RESUMO

Cuproptosis is a recently identified copper-dependent form of nonapoptotic cell death and holds great prospect in cancer treatment. One of the most intriguing aspects of cuproptosis is its ability to synergize with apoptosis-based cancer treatments. Herein, we presented a novel approach using copper-coordinated nanoassemblies (CCNAs) that were constructed by incorporating a photosensitizer Zinc Phthalocyanine (ZnPc)-chemotherapeutic (DOX) prodrug with a thioketal (TK) spacer and an IDO inhibitor (1-methyl tryptophan, 1-MT) as building blocks for Cu2+-coordination self-assembly to achieve combinational apoptosis-cuproptosis and immunotherapy. Upon NIR laser irradiation, the ZnPc component of CCNAs exhibited a photodynamic effect that generated reactive oxygen species (ROS). This triggered the release of DOX, leading to enhanced tumor cell apoptosis. Additionally, the presence of Cu2+ in the CCNAs not only enhanced the photodynamic process by catalyzing oxygen generation but also promoted the aggregation of toxic mitochondrial proteins, leading to cell cuproptosis. Importantly, the intensified cuproptosis-apoptosis effect triggered an immunogenic cell death (ICD) response. The released 1-MT complemented this response by reversing the immunosuppressive tumor microenvironment (ITM), synergistically amplifying anti-tumor immunity and suppressing the growth of primary and distant tumors. The findings of this study provide a new perspective on potential cancer treatments based on cuproptosis-apoptosis synergistic immunotherapy and stimulate further research in the design of advanced metal-coordinated nanomedicines. STATEMENT OF SIGNIFICANCE: The combination of cuproptosis and apoptosis that act with different mechanisms holds enormous potential in cancer treatment. Here, copper-coordinated nanoassemblies (CCNAs) based on photosensitizer-chemo prodrugs and checkpoint inhibitors were constructed for mediating cuproptosis-apoptosis and subsequently promoting cancer immunotherapy. CCNAs not only promoted the photodynamic effect and activation of chemotherapy through catalyzing the generation of oxygen but also induced toxic mitochondrial protein aggregation, leading to cell cuproptosis. These synergistic antitumor effects triggered robust immune responses with the aid of immune checkpoint blockade, almost eradicating primary tumors and inhibiting distant tumors by around 83 % without systemic toxicity.


Assuntos
Fármacos Fotossensibilizantes , Pró-Fármacos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Pró-Fármacos/farmacologia , Cobre/farmacologia , Linhagem Celular Tumoral , Apoptose , Imunoterapia , Oxigênio
13.
J Ind Microbiol Biotechnol ; 40(1): 141-50, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23188414

RESUMO

The mycelia of Trametes versicolor immobilized in alginate beads provided higher laccase production than that in pelleted form. An efficient ultrasonic treatment enhanced laccase production from the immobilized T. versicolor cultures. The optimized treatment process consisted of exposing 36-h-old bead cultures to 7-min ultrasonic treatments twice with a 12-h interval using a fixed ultrasonic power and frequency (120 W, 40 kHz). Using the intensification strategy with sonication, laccase production increased by more than 2.1-fold greater than the untreated control in both flasks and bubble column reactors. The enhancement of laccase production by ultrasonic treatment is related to the improved mass transfer of nutrients and product between the liquid medium and the gel matrix. These results provide a basis for the large-scale and highly-efficient production of laccase using sonobioreactors.


Assuntos
Lacase/biossíntese , Trametes/enzimologia , Ultrassom , Células Imobilizadas/metabolismo , Micélio/enzimologia , Sonicação
14.
J Mater Chem B ; 10(47): 9838-9847, 2022 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-36448199

RESUMO

Simple biomolecule-based supramolecular nanomedicines hold great promise in cancer therapy, but their clinical translation is greatly hindered by low tumor-specificity and unsatisfactory antitumor performance. Herein, we developed an amino acid basedsupramolecular nanomedicine that could be co-activated by multiple stimuli in tumor tissue to trigger cascade catalytic reactions in situ for synergetic therapy. The supramolecular nanomedicine was developed based on a combination of coordination and hydrophobic noncovalent interactions among amphiphilic amino acids, glucose oxidase (GOx), copper ions, as well as doxorubicin (DOX)-camptothecin (CPT) prodrugs. The cascade reactions including the catalytic oxidation of glucose to generate H2O2, GSH reducing Cu2+ to Cu+, a Fenton-like reaction between H2O2 and Cu+ to produce hydroxyl radicals (˙OH), and ˙OH-triggered rapid release of dual parent drugs were specifically activated in tumor cells. With these cascade reactions, the catalytic-chemo synergetic therapy was realized for high-efficiency tumor suppression.


Assuntos
Aminoácidos , Neoplasias , Peróxido de Hidrogênio , Nanomedicina , Neoplasias/tratamento farmacológico
15.
RSC Adv ; 12(16): 9660-9670, 2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35424931

RESUMO

A breakthrough in enhancing visible-light photocatalysis of wide-bandgap semiconductors such as prototypical titania (TiO2) via cocatalyst decoration is still challenged by insufficient heterojunctions and inevitable interfacial transport issues. Herein, we report a novel TiO2-based composite material composed of in situ generated polymorphic nanodomains including carbon nitride (C3N4) and (001)/(101)-faceted anatase nanocrystals. The introduction of ultrafine C3N4 results in the generation of many oxygen vacancies in the TiO2 lattice, and simultaneously induces the exposure and growth of anatase TiO2(001) facets with high surface energy. The photocatalytic performance of C3N4-induced TiO2 for degradation of 2,4-dichlorophenol under visible-light irradiation was tested, its apparent rate being up to 1.49 × 10-2 min-1, almost 3.8 times as high as that for the pure TiO2 nanofibers. More significantly, even under low operation temperature and after a long-term photocatalytic process, the composite still exhibits exceptional degradation efficiency and stability. The normalized degradation efficiency and effective lifespan of the composite photocatalyst are far superior to other reported modified photocatalysts.

16.
J Pineal Res ; 50(1): 83-8, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21073518

RESUMO

An important aspect of the function of melatonin seems to be the mediation of stress caused by environmental and chemical factors. In the cryopreservation process, environmental changes including osmotic injury, desiccation, and low temperature can impose a series of stresses on plants. In this study, we evaluated the role of melatonin in stress protection during the process of cryopreservation using callus of an endangered plant species Rhodiola crenulata. The survival rate of the cryopreserved callus significantly increased when the callus was pretreated for 5 days with 0.1 µm melatonin prior to freezing in liquid nitrogen. Analysis of antioxidative activity following the pretreatment of callus with 0.1 µm melatonin showed a significant reduction in malondialdehyde production during various steps of cryopreservation. Enhanced peroxidase and catalase activity was observed in the callus after pretreatment with 0.1 µm melatonin compared to the control. These observations provide new evidence of the antioxidant/anti-stress function of melatonin, and it is the first report of its potential application in the preservation of elite endangered germplasm through the process of cryopreservation.


Assuntos
Criopreservação , Melatonina/farmacologia , Rhodiola/efeitos dos fármacos , Rhodiola/metabolismo , Antioxidantes/metabolismo , Catalase/metabolismo , Glutationa Peroxidase/metabolismo , Malondialdeído/metabolismo , Peroxidases/metabolismo
17.
Nanoscale Adv ; 3(22): 6482-6489, 2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36133486

RESUMO

The clinical translation of chemodynamic therapy has been highly obstructed by the insufficient intracellular H2O2 level in diseased tissues. Herein, we developed a supramolecular nanozyme through a facile one-step cooperative coordination self-assembly of an amphipathic amino acid and glucose oxidase (GOx) in the presence of Fe2+. The results demonstrated that the supramolecular nanozyme possessed cascade enzymatic activity (i.e., GOx and peroxidase), which could amplify the killing efficacy of hydroxyl radicals (˙OH) via self-supplying H2O2, finally achieving synergistic starvation-chemodynamic cancer therapy in vitro. Additionally, this cascade nanozyme also exhibited highly effective antibacterial activity on Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) without the need for additional H2O2. This work provided a promising strategy for the design and development of nanozymes for future biomedical applications.

18.
Eng Life Sci ; 21(6): 374-381, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34140848

RESUMO

Enzymatic degradation of emerging contaminants has gained great interest for the past few years. However, free enzyme often incurs high costs in practice. The immobilized laccase on the polyethylenimine (PEI)-functionalized magnetic nanoparticles (Fe3O4-NH2-PEI-laccase) was fabricated to efficiently degrade phenolic compounds continuously in a newly fixed bed reactor under a high-gradient magnetic field. The degradation rate of continuous treatment in the bed after 18 h was 2.38 times as high as that of batch treatment after six successive operations with the same treatment duration. Under the optimal conditions of volume fraction of nickel wires mesh, flow rate of phenol solution, phenol concentration, and Fe3O4-NH2-PEI-laccase amount, the degradation rate of phenol kept over 70.30% in 48 h continuous treatment. The fixed bed reactor filled with Fe3O4-NH2-PEI-laccase provided a promising avenue for the continuous biodegradation of phenolic compounds for industrial wastewater in practice.

19.
AMB Express ; 11(1): 137, 2021 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-34661766

RESUMO

Ajuga integrifolia Buch. Ham. ex D.Don, a member of Lamiaceae family is pharmaceutically an active perennial herb widely spread in China, Afghanistan and Pakistan Himalayan region. The application of biotic elicitors is a promising approach to cover limitations of in vitro cell technology and challenges faced by pharmaceuticals industry for bulk up production. The current study involved the induction of agitated micro-shoot cultures with the aim to investigate the growth-promoting as well as phytochemicals enhancement role of yeast extract (YE) and pectin (PE). The results showed that both elicitors induced a considerable physiological response. Biomass accumulation was observed maximum (DW: 18.3 g/L) against PE (10 mg/L) compared to YE and control. Eleven secondary phytocompounds were quantified using high-performance liquid chromatography. PE (50 mg/L) was found to be effective in elicitation of rosmarinic acid (680.20 µg/g), chlorogenic acid (294.12 µg/g), apigenin (579.61 µg/g) and quercetin (596.89 µg/g). However, maximum caffeic acid (359.52 µg/g) and luteolin (546.12 µg/g accumulation was noted in PE (1 mg/L) treatment. Harpagide, aucubin, harpagoside and 8-O-acetyl-harpagoside production was suppressed by both elicitors except for YE (100 mg/L). Catalpol accumulation in micro-shoot cultures was also downregulated except in response to YE (50 and 100 mg/L). Antioxidant activity and anti-inflammatory activity remained higher under PE (50 mg/L) and YE (100 mg/L) respectively. Therefore, results suggested that Ajuga integrifolia micro-shoot cultures treated with yeast extract and pectin might be an efficient bio-factory to produce commercially potent specific secondary metabolites.

20.
Nanomaterials (Basel) ; 12(1)2021 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-35010080

RESUMO

Nanotechnology is a booming avenue in science and has a multitude of applications in health, agriculture, and industry. It exploits materials' size at nanoscale (1-100 nm) known as nanoparticles (NPs). These nanoscale constituents are made via chemical, physical, and biological methods; however, the biological approach offers multiple benefits over the other counterparts. This method utilizes various biological resources for synthesis (microbes, plants, and others), which act as a reducing and capping agent. Among these sources, microbes provide an excellent platform for synthesis and have been recently exploited in the synthesis of various metallic NPs, in particular iron. Owing to their biocompatible nature, superparamagnetic properties, small size efficient, permeability, and absorption, they have become an integral part of biomedical research. This review focuses on microbial synthesis of iron oxide nanoparticles using various species of bacteria, fungi, and yeast. Possible applications and challenges that need to be addressed have also been discussed in the review; in particular, their antimicrobial and anticancer potentials are discussed in detail along with possible mechanisms. Moreover, some other possible biomedical applications are also highlighted. Although iron oxide nanoparticles have revolutionized biomedical research, issues such as cytotoxicity and biodegradability are still a major bottleneck in the commercialization of these nanoparticle-based products. Addressing these issues should be the topmost priority so that the biomedical industry can reap maximum benefit from iron oxide nanoparticle-based products.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA