Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 57(31): 11373-11388, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37470763

RESUMO

The production scalability and increasing demand for nano-black phosphorus materials (nano-BPs) inevitably lead to their environmental leakage, thereby raising the risk of human exposure through inhalation, ingestion, dermal, and even intravenous pathways. Consequently, a systematic evaluation of their potential impacts on human health is necessary. This Review outlines recent progress in the understanding of various biological responses to nano-BPs. Attention is particularly given to the inconsistent toxicological findings caused by a wide variation of nano-BPs' physicochemical properties, toxicological testing methods, and cell types examined in each study. Additionally, cellular uptake and intracellular trafficking, cell death modes, immunological effects, and other biologically relevant processes are discussed in detail, providing evidence for the potential health implications of nano-BPs. Finally, we address the remaining challenges related to the health risk evaluation of nano-BPs and propose a broader range of applications for these promising nanomaterials.


Assuntos
Nanoestruturas , Fósforo , Humanos , Fósforo/química , Nanoestruturas/toxicidade , Transporte Biológico
2.
Angew Chem Int Ed Engl ; 62(6): e202213336, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36218046

RESUMO

The remarkable progress of applied black phosphorus nanomaterials (BPNMs) is attributed to BP's outstanding properties. Due to its potential for applications, environmental release and subsequent human exposure are virtually inevitable. Therefore, how BPNMs impact biological systems and human health needs to be considered. In this comprehensive Minireview, the most recent advancements in understanding the mechanisms and regulation factors of BPNMs' endogenous toxicity to mammalian systems are presented. These achievements lay the groundwork for an understanding of its biological effects, aimed towards establishing regulatory principles to minimize the adverse health impacts.


Assuntos
Nanoestruturas , Fósforo , Animais , Humanos , Nanoestruturas/toxicidade , Mamíferos
3.
Chem Biol Interact ; 395: 110994, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38582339

RESUMO

Exposure to environmental pollutants, including nanomaterials, has a significant impact on tumor progression. The increased demand for black phosphorus nanosheets (BPNSs), driven by their exceptional properties, raises concerns about potential environmental contamination. Assessing their toxicity on tumor growth is essential. Herein, we employed a range of biological techniques, including cytotoxicity measurement, bioinformatics tools, proteomics, target gene overexpression, Western blot analysis, and apoptosis detection, to investigate the toxicity of BPNSs across A549, HepG-2, MCF-7, and Caco-2 cell lines. Our results demonstrated that BPNSs downregulated the expression of ADIPOQ and its associated downstream pathways, such as AMP-activated protein kinase (AMPK), nuclear factor erythroid 2-related factor 2 (Nrf2), and other unidentified pathways. These downregulated pathways ultimately led to mitochondria-dependent apoptosis. Notably, the specific downstream pathways involved varied depending on the type of tumors. These insightful findings not only confirm the consistent inhibitory effects of BPNSs across different tumor cells, but also elucidate the cytotoxicity mechanisms of BPNSs in different tumors, providing valuable information for their safe application and health risk assessment.


Assuntos
Adiponectina , Apoptose , Proliferação de Células , Regulação para Baixo , Nanoestruturas , Fósforo , Transdução de Sinais , Humanos , Fósforo/química , Proliferação de Células/efeitos dos fármacos , Adiponectina/metabolismo , Regulação para Baixo/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Nanoestruturas/química , Nanoestruturas/toxicidade , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proteínas Quinases Ativadas por AMP/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética
4.
Environ Sci Pollut Res Int ; 30(4): 10149-10156, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36071359

RESUMO

In this digitalized world, economies have energetically encouraged green transformation. The empirical findings regarding the nexus between human capital and green growth are relatively inconclusive. The study originally explores the effect of human capital on the green growth of a digital economy like China from 1991 to 2019. To investigate the model empirically, we have applied the ARDL technique. Our results indicate that there is a positive impact of different levels of education on the green growth of China in the long run. Regression results also show that renewable energy consumption, internet use, and financial development lead to expansion in green growth in the long run. Our findings can strengthen the belief of the Chinese government on the advancement of green growth.


Assuntos
Dióxido de Carbono , Desenvolvimento Econômico , Humanos , Dióxido de Carbono/análise , Energia Renovável , China
5.
ACS Nano ; 17(4): 3574-3586, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36602915

RESUMO

With the extensive production and application of black phosphorus (BP) nanosheets, release to the environment is inevitable, which raises concerns about the fate and effects of this two-dimensional (2D) material on sensitive receptors such as environmental microbes. Although the bacterial toxicity of BP nanosheets has been demonstrated, whether the biological response differs in pathogenic and nonpathogenic strains of a microorganism is unknown. Here, enteropathogenic Escherichia coli (EPEC) and nonpathogenic Escherichia coli DH5α (E. coli DH5α), Escherichia coli k12 (E. coli k12), and Bacillus tropicus (B. tropicus) are used to comparatively study the microbial toxicity of BP nanosheets. Upon exposure to BP nanosheets across a range of doses from 10 to 100 µg mL-1 for 12 h, EPEC experienced enhanced growth and E. coli DH5α and E. coli k12 were not affected, whereas B. tropicus exhibited clear toxicity. By combining transcriptome sequencing, proteome analysis, and other sensitive biological techniques, the mechanism of BP-induced growth promotion for EPEC was uncovered. Briefly, BP nanosheets activate the antioxidation system to resist oxidative stress, promote protein synthesis and secretion to attenuate membrane damage, enhance the energy supply, and activate growth-related pathways. None of these impacts were evident with nonpathogenic strains. By describing the mechanism of strain-dependent microbial effects, this study not only highlights the potential risks of BP nanosheets to the environment and to human health but also calls attention to the importance of model strain selection when evaluating the hazard and toxicity of emerging nanomaterials.


Assuntos
Escherichia coli Enteropatogênica , Proteínas de Escherichia coli , Humanos , Proteínas de Transporte , Escherichia coli Enteropatogênica/genética , Escherichia coli Enteropatogênica/metabolismo , Proteínas de Escherichia coli/metabolismo , Perfilação da Expressão Gênica , Fósforo , Nanoestruturas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA