Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Langmuir ; 39(14): 5056-5064, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-37005495

RESUMO

In an effort to fulfill the strategy of sustainable development, Rhodamine B, a common and toxic organic pollutant in the textile industry, was reported for the first time as a single precursor to develop a kind of novel hydrophobic nitrogen-doped carbon dot (HNCD) through a green and facile one-pot solvothermal method. The HNCDs with an average size of 3.6 nm possess left and right water contact angles of 109.56° and 110.34°, respectively. The HNCDs manifest excitation wavelength-tunable and upconverted fluorescence from the ultraviolet (UV) to the near-infrared (NIR) range. Furthermore, the PEGylation of HNCDs enables them to be used as an optical marker for cell and in vivo imaging. Notably, the HNCDs with solvent-dependent fluorescence can be used for invisible inks with a wide range of light responses from UV-vis-NIR spectra. This work not only provides an innovative way to recycle chemical waste but also expands the potential application of HNCDs in NIR security printing and bioimaging.


Assuntos
Carbono , Pontos Quânticos , Carbono/química , Fluorescência , Pontos Quânticos/química
2.
Physiol Plant ; 175(2): e13872, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36764699

RESUMO

Soybean is a pivotal protein and oil crop that utilizes atmospheric nitrogen via symbiosis with rhizobium soil bacteria. Rhizobial type III effectors (T3Es) are essential regulators during symbiosis establishment. However, how the transcription factors involved in the interaction between phytohormone synthesis and type III effectors are connected is unclear. To detect the responses of phytohormone and transcription factor genes to rhizobial type III effector NopAA and type III secretion system, the candidate genes underlying soybean symbiosis were identified using RNA sequencing (RNA-seq) and phytohormone content analysis of soybean roots infected with wild-type Rhizobium and its derived T3E mutant. Via RNA-seq analysis the WRKY and ERF transcription factor families were identified as the most differentially expressed factors in the T3E mutant compared with the wild-type. Next, qRT-PCR was used to confirm the candidate genes Glyma.09g282900, Glyma.08g018300, Glyma.18g238200, Glyma.03g116300, Glyma.07g246600, Glyma.16g172400 induced by S. fredii HH103, S. fredii HH103ΩNopAA, and S. fredii HH103ΩRhcN. Since the WRKY and ERF families may regulate abscisic acid (ABA) content and underlying nodule formation, we performed phytohormone content analysis at 0.5 and 24 h post-inoculation (hpi). A significant change in ABA content was found between wild Rhizobium and type III effector mutant. Our results support that NopAA can promote the establishment of symbiosis by affecting the ABA signaling pathways by regulating WRKY and ERF which regulate the phytohormone signaling pathway. Specifically, our work provides insights into a signaling interaction of prokaryotic effector-induced phytohormone response involved in host signaling that regulates the establishment of symbiosis and increases nitrogen utilization efficiency in soybean plants.


Assuntos
Glycine max , Rhizobium , Glycine max/genética , Reguladores de Crescimento de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Simbiose/fisiologia , Raízes de Plantas/microbiologia
3.
Small ; 18(15): e2107422, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35233936

RESUMO

Cuprous-based nanozymes have demonstrated great potential for cascade chemodynamic therapy (CDT) due to their higher catalytic efficiency and simple reaction conditions. Here, hollow cuprous oxide@nitrogen-doped carbon (HCONC) dual-shell structures are designed as nanozymes for CDT oncotherapy. This HCONC with a size distribution of 130 nm is synthesized by a one-step hydrothermal method using cupric nitrate and dimethyl formamide as precursors. The thin-layer carbon (1.88 nm) of HCONC enhances the water-stability and reduces the systemic toxicity of cuprous oxide nanocrystals. The dissolved Cu+ of HCONC in acid solution induces a Fenton-like reaction and exhibits a fast reaction rate for catalyzing H2 O2 into highly toxic hydroxyl radicals (·OH). Meanwhile, the formed Cu+ consumes oversaturated glutathione (GSH) to avoid its destruction of ROS at the intracellular level. In general, both cellular and animal experiments show that HCONC demonstrates excellent antitumor ability without causing significant systemic toxicity, which may present tremendous potential for clinical cancer therapy.


Assuntos
Nanocápsulas , Neoplasias , Animais , Carbono , Linhagem Celular Tumoral , Cobre , Glutationa/química , Peróxido de Hidrogênio/química , Neoplasias/tratamento farmacológico , Nitrogênio
4.
Small ; 17(31): e2100794, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34165871

RESUMO

Phototherapy in the second near-IR (1000-1700 nm, NIR-II) window has achieved much progress because of its high efficiency and relatively minor side effects. In this paper, a new NIR-II responsive hollow magnetite nanocluster (HMNC) for targeted and imaging-guided cancer therapy is reported. The HMNC not only provides a hollow cavity for drug loading but also serves as a contrast agent for tumor-targeted magnetic resonance imaging. The acid-induced dissolution of the HMNCs can trigger a pH-responsive drug release for chemotherapy and catalyze the hydroxyl radical (·OH) formation from the decomposition of hydrogen peroxide for chemodynamic therapy. Moreover, the HMNCs can adsorb and convert NIR-II light into local heat (photothermal conversion efficacy: 36.3%), which can accelerate drug release and enhance the synergistic effect of chemo-photothermal therapy. The HMNCs show great potential as a versatile nanoplatform for targeted imaging-guided trimodal cancer therapy.


Assuntos
Hipertermia Induzida , Nanopartículas , Doxorrubicina , Liberação Controlada de Fármacos , Óxido Ferroso-Férrico , Imageamento por Ressonância Magnética , Fototerapia
5.
Nano Lett ; 19(8): 5260-5265, 2019 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-31268725

RESUMO

Visualizing deep-brain vasculature and hemodynamics is key to understanding brain physiology and pathology. Among the various adopted imaging modalities, multiphoton microscopy (MPM) is well-known for its deep-brain structural and hemodynamic imaging capability. However, the largest imaging depth in MPM is limited by signal depletion in the deep brain. Here we demonstrate that quantum dots are an enabling material for significantly deeper structural and hemodynamic MPM in mouse brain in vivo. We characterized both three-photon excitation and emission parameters for quantum dots: the measured three-photon cross sections of quantum dots are 4-5 orders of magnitude larger than those of conventional fluorescent dyes excited at the 1700 nm window, while the three-photon emission spectrum measured in the circulating blood in vivo shows a slight red shift and broadening compared with ex vivo measurement. On the basis of these measured results, we further demonstrate both structural and hemodynamic three-photon microscopy in the mouse brain in vivo labeled by quantum dots, at record depths among all MPM modalities at all demonstrated excitation wavelengths.


Assuntos
Encéfalo/irrigação sanguínea , Hemodinâmica , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Pontos Quânticos/análise , Animais , Camundongos , Neuroimagem/métodos
6.
Anal Chem ; 91(15): 9371-9375, 2019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-31339298

RESUMO

Optical access of a mouse brain using microscopes is the key to study brain structures and functions in vivo. However, the opaque skull of a mouse has to be either opened or thinned in an invasive way to attain an adequate imaging depth in the brain. Mild skull optical clearing is highly desired, but its chemical mechanism is far from being understood. Here, we unraveled the molecular process underlying optical clearing of the mouse skull by label-free hyperspectral stimulated Raman scattering (SRS) microscopy, thereby discovering the optimal clearing strategy to turn a turbid skull into a transparent skull window. Furthermore, we demonstrated in vivo three-photon imaging of vascular structures as deep as 850 µm in the cortex of the mouse brain. Coherent Raman based microspectroscopy holds great promise to advance skull and tissue clearing methods in the future.


Assuntos
Neuroimagem/métodos , Análise Espectral Raman/métodos , Animais , Encéfalo/irrigação sanguínea , Encéfalo/citologia , Encéfalo/diagnóstico por imagem , Córtex Cerebral/irrigação sanguínea , Córtex Cerebral/diagnóstico por imagem , Camundongos , Crânio
7.
Opt Express ; 27(9): 12723-12731, 2019 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-31052809

RESUMO

Fluorescent proteins are widely used to visualize structures and dynamics in various biological samples. Multiphoton microscopy is especially suitable for imaging structures expressing fluorescent proteins with subcellular resolution. 3-photon microscopy (3PM) excited at the 1700-nm window has proven to be promising for deep-tissue (such as brain) imaging expressing red fluorescent proteins. However, the 3-photon excitation and emission spectra of fluorescent proteins suitable at this window remain largely unknown, hampering protein selection and detection optimization. Here we demonstrate detailed measurement of 3-photon excitation and emission spectra for selected fluorescent proteins, suitable for 3-photon excitation at the 1700-nm window. The measured 3-photon excitation spectra will provide guidelines for protein and excitation wavelength selection. The measured 3-photon emission spectra and comparison with the 1-photon emission spectra, on one hand proves that the fundamental Kasha's rule is still valid for 3-photon fluorescence in these fluorescent proteins, on the other hand will be helpful for efficient fluorescence signal detection.

8.
Opt Express ; 27(11): 15309-15317, 2019 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-31163728

RESUMO

Here, we demonstrate a polarized high-energy soliton synthesis technique for deep-brain 3-photon microscopy (3PM) excited at the 1700-nm window. Through coherent combining, we generate linearly polarized high-energy solitons whose energy is twice as high than those of each linearly polarized solitons. Due to the nonlinear origin of signals, both measured 3-photon fluorescence signal and third-harmonic signals are thus boosted by ~8 times in a tissue phantom. Using this technique, we further demonstrate 3PM of sulforhodamine 101 labeled vasculature 1600 µm in the mouse brain in vivo, which cannot be achieved by single-polarized soliton excitation.

9.
Opt Lett ; 44(17): 4432-4435, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31465421

RESUMO

Here we demonstrate deep-brain 2-photon fluorescence microscopy in mouse in vivo, excited at the 1700 nm window. Through signal versus power measurement, we show that indocyanine green (ICG) is a promising 2-photon fluorescent dye excitable at the 1700 nm window. In order to excite ICG circulating in the vasculature in the deep brain, we employ a circular-polarization soliton self-frequency shift technique to generate energetic femtosecond pulses at 1617 nm. Combining the labeling and laser technologies, we achieve a record 2-photon fluorescence brain vasculature imaging depth of 2000 µm in vivo. Both the effective attenuation length measurement and signal-to-background ratio measurement indicate that we have reached the theoretical depth limit in 2-photon fluorescence microscopy.

11.
Anal Chem ; 88(10): 5080-7, 2016 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-27111505

RESUMO

The complication of IgG2 disulfide connections demands advances in techniques for disulfide bond determination. We have developed a new LC/MS/MS method for improved disulfide analysis. With postcolumn introduction of dithiothreitol (DTT) and ammonium hydroxide, each disulfide-containing peptide eluted out of LC in an acidic mobile phase can be rapidly reduced prior to MS analysis. The reduction can be driven to near completion. The reagents are MS-friendly, and the reaction occurs at no cost of separation (little is added to the postcolumn dead volume of the LC system). Comparing LC/MS data with and without online reduction, a direct correlation can be established between a disulfide peptide and its composing peptides using retention time. With disulfide online removal, high-quality MS/MS fragmentation data can be acquired and allows for definitive determination of the disulfide peptide. This technique is especially valuable in determining the disulfide bond linkage of complicated molecules such as the hinge-containing disulfide peptides produced from IgG2 disulfide isoforms. Due to over/under enzymatic cleavages, multiple hinge-containing disulfide peptides are produced from each isoform. Twenty-two hinge-containing disulfide peptides in total have been confidently identified with this technique. Without the method, successful identification to many of these peptides would have become extremely difficult.


Assuntos
Dissulfetos/química , Imunoglobulina G/química , Fragmentos de Peptídeos/química , Sequência de Aminoácidos , Hidróxido de Amônia/química , Cromatografia Líquida , Ditiotreitol/química , Concentração de Íons de Hidrogênio , Oxirredução , Espectrometria de Massas em Tandem
12.
Phys Chem Chem Phys ; 18(39): 27232-27244, 2016 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-27711642

RESUMO

Although numerous research studies have been focused on studying the self-assembled morphologies of block-copolymers (BCPs) and their nanocomposites, little attention has been directed to explore the relation between their ordered structures and the resulting mechanical properties. We adopt coarse-grained molecular dynamics simulation to study the influence of the morphologies on the stress-strain behavior of pure block copolymers and block copolymers filled with uniform or Janus nanoparticles (NPs). At first, we examine the effect of the arrangement (di-block, tri-block, alternating-block) and the components of the pure block copolymers, and by varying the component ratio between A and B blocks, spherical, cylindrical and lamellar phases are all formed, showing that spherical domains bring the largest reinforcing effect. Then by studying BCPs filled with NPs, the Janus NPs induce stronger bond orientation of polymer chains and greater mechanical properties than the uniform NPs, when these two kinds of NPs are both located in the interface region. Meanwhile, some other anisotropic Janus NPs, such as Janus rods and Janus sheets, are incorporated to examine the effect on the morphology and the stress-strain behavior. These findings deepen our understanding of the morphology-mechanics relation of BCPs and their nanocomposites, opening up a vast number of approaches such as designing the arrangement and components of BCPs, positioning uniform or Janus NPs with different shapes and shear flow to tailor their stress-strain performance.

13.
Phys Chem Chem Phys ; 18(36): 25090-25099, 2016 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-27711653

RESUMO

Introducing carbon nanotubes or graphene sheets into polymer matrices has received lots of scientific and technological attention. For the first time, we report a new kind of polymer nanocomposite (PNC) by means of employing anisotropic nanoparticles (NPs) as netpoints (referred to as an end-linked system), namely with NPs acting as netpoints to chemically connect the dual end-groups of each polymer chain to form a network. By taking advantage of this strategy, the anisotropic NPs can be uniformly distributed in the polymer matrix, with the NPs being separated via the connected polymer chains. And the separation distance between NPs, the stress-strain behavior and the dynamic hysteresis loss (HL) can be manipulated by varying the temperature and the polymer chain flexibility. Meanwhile, the physically mixed system is investigated by changing the interaction strength between polymer and NPs, and the temperature. It is emphasized that compared to the physically mixed system, the end-linked system which employs carbon nanotubes or graphene as netpoints possesses good thermal stability because of its thermodynamically stable morphology, exhibiting both excellent static and dynamic mechanical properties. These results help us to design and fabricate high performance and multi-functional PNCs filled with carbon nanotubes or graphene, facilitating the potentially large industrial application of these nanomaterials.

14.
Adv Sci (Weinh) ; : e2307254, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38946659

RESUMO

The rational construction of efficient hypoxia-tolerant nanocatalysts capable of generating singlet oxygen (1O2) without external stimuli is of great importance for tumor therapy. Herein, uniformly dispersed and favorable biosafety profile graphitic carbon nitride quantum dots immobilized with Fe-N4 moieties modulated by axial O atom (denoted as O-Fe-N4) are developed for converting H2O2 into 1O2 via Russell reaction, without introducing external energy. Notably, O-Fe-N4 performs two interconnected catalytic properties: glutathione oxidase-mimic activity to provide substrate for subsequent 1O2 generation, avoiding the blunting anticancer efficacy by glutathione. The O-Fe-N4 catalyst demonstrates a specific activity of 79.58 U mg-1 at pH 6.2, outperforming the most reported Fe-N4 catalysts. Density functional theory calculations demonstrate that the axial O atom can effectively modulate the relative position and electron affinity between Fe and N, lowering the activation energy, strengthening the selectivity, and thus facilitating the Russell-type reaction. The gratifying enzymatic activity stemming from the well-defined Fe-N/O structure can inhibit tumor proliferation by efficiently downregulating glutathione peroxidase 4 activity and inducing lipid peroxidation. Altogether, the O-Fe-N4 catalyst not only represents an efficient platform for self-cascaded catalysis to address the limitations of 1O2-involved cancer treatment but also provides a paradigm to enhance the performance of the Fe-N4 catalyst.

15.
Int J Biol Macromol ; : 133426, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38936574

RESUMO

The structure and bioactivities of a novel polysaccharide from Lonicera caerulea L. var. edulis Turcz. ex Herd. fruit (THP-3) were investigated. The crude polysaccharides of Turcz. ex Herd. (THP) were extracted by hot water extraction. After purification, the chemical structure of polysaccharides was identified. Then, a mouse model of acute drug-induced liver injury was constructed using 4-acetamidophenol (APAP) and pretreated with THP. The number-average molecular weight of THP-3 was 48.89 kDa and the mass average molar mass was 97.87 kDa. THP-3 was mainly composed of arabinose (42.54 %), glucose (27.62 %), galacturonic acid and galactose (29.84 %). The main linkage types of THP-3 were 1-linked Araf, 1,4-linked Glcp, and 1,3,6-linked Galp. In addition, after THP treatment, serum Alanine aminotransferase (ALT), Aspartate aminotransferase (AST) and γ-glutamyl transpeptidase (γGT) in AILI mice were successfully down-regulated. The results showed that THP could prevent the characteristic morphological changes of hepatic lobular injury and lipid depletion caused by APAP, reduced the level of oxidative damage in mice, increased the expression of APAP-induced hypolipidemia and related inflammatory indicators, and improved the detoxification function of liver. In general, the newly extracted THP polysaccharide has a good liver protection effect and is an ideal natural medicine for the treatment of liver diseases.

16.
Biomaterials ; 310: 122635, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38810386

RESUMO

Hepatocellular carcinoma (HCC) seriously threatens the human health. Previous investigations revealed that γ-glutamyltranspeptidase (GGT) was tightly associated with the chronic injury, hepatic fibrosis, and the development of HCC, therefore might act as a potential indicator for monitoring the HCC-related processes. Herein, with the contribution of a structurally optimized probe ETYZE-GGT, the bimodal imaging in both far red fluorescence (FL) and photoacoustic (PA) modes has been achieved in multiple HCC-related models. To our knowledge, this work covered the most comprehensive models including the fibrosis and developed HCC processes as well as the premonitory induction stages (autoimmune hepatitis, drug-induced liver injury, non-alcoholic fatty liver disease). ETYZE-GGT exhibited steady and practical monitoring performances on reporting the HCC stages via visualizing the GGT dynamics. The two modes exhibited working consistency and complementarity with high spatial resolution, precise apparatus and desirable biocompatibility. In cooperation with the existing techniques including testing serum indexes and conducting pathological staining, ETYZE-GGT basically realized the universal application for the accurate pre-clinical diagnosis of as many HCC stages as possible. By deeply exploring the mechanically correlation between GGT and the HCC process, especially during the premonitory induction stages, we may further raise the efficacy for the early diagnosis and treatment of HCC.


Assuntos
Carcinoma Hepatocelular , Técnicas Fotoacústicas , gama-Glutamiltransferase , gama-Glutamiltransferase/metabolismo , Animais , Humanos , Carcinoma Hepatocelular/diagnóstico por imagem , Técnicas Fotoacústicas/métodos , Neoplasias Hepáticas/diagnóstico por imagem , Hepatopatias/diagnóstico por imagem , Imagem Óptica/métodos , Camundongos , Masculino , Camundongos Endogâmicos BALB C , Fígado/patologia , Fígado/diagnóstico por imagem , Fígado/enzimologia , Corantes Fluorescentes/química
17.
Front Pharmacol ; 14: 1154654, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37234717

RESUMO

CDK4/6 plays a crucial role in various cancers and is an effective anticancer drug target. However, the gap between clinical requirements and approved CDK4/6 drugs is unresolved. Thus, there is an urgent need to develop selective and oral CDK4/6 inhibitors, particularly for monotherapy. Here, we studied the interaction between abemaciclib and human CDK6 using molecular dynamics simulations, binding free energy calculations, and energy decomposition. V101 and H100 formed stable hydrogen bonds with the amine-pyrimidine group, and K43 interacted with the imidazole ring via an unstable hydrogen bond. Meanwhile, I19, V27, A41, and L152 interacted with abemaciclib through π-alkyl interactions. Based on the binding model, abemaciclib was divided into four regions. With one region modification, 43 compounds were designed and evaluated using molecular docking. From each region, three favorable groups were selected and combined with each other to obtain 81 compounds. Among them, C2231-A, which was obtained by removing the methylene group from C2231, showed better inhibition than C2231. Kinase profiling revealed that C2231-A showed inhibitory activity similar to that of abemaciclib; additionally, C2231-A inhibited the growth of MDA-MB-231 cells to a greater extent than did abemaciclib. Based on molecular dynamics simulation, C2231-A was identified as a promising candidate compound with considerable inhibitory effects on human breast cancer cell lines.

18.
Materials (Basel) ; 16(5)2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36903133

RESUMO

The pouring time interval is the decisive factor of dual-liquid casting for bimetallic productions. Traditionally, the pouring time interval is fully determined by the operator's experience and on-site observation. Thus, the quality of bimetallic castings is unstable. In this work, the pouring time interval of dual-liquid casting for producing low alloy steel/high chromium cast iron (LAS/HCCI) bimetallic hammerheads is optimized via theoretical simulation and experimental verification. The relevancies of interfacial width and bonding strength to pouring time interval are, respectively, established. The results of bonding stress and interfacial microstructure indicate that 40 s is the optimum pouring time interval. The effects of interfacial protective agent on interfacial strength-toughness are also investigated. The addition of the interfacial protective agent yields an increase of 41.5% in interfacial bonding strength and 15.6% in toughness. The optimum dual-liquid casting process is used to produce LAS/HCCI bimetallic hammerheads. Samples cut from these hammerheads show excellent strength-toughness (1188 Mpa for bonding strength and 17 J/cm2 for toughness). The findings could be a reference for dual-liquid casting technology. They are also helpful for understanding the formation theory of the bimetal interface.

19.
Biosens Bioelectron ; 241: 115721, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37788579

RESUMO

Herein, the Near-infrared imaging of hepatocellular carcinoma (HCC) and its medicinal treatment was achieved with a γ-glutamyl transpeptidase (GGT)-monitoring fluorescence probe KYZ-GGT which consisted of the typical recognition group γ-glutamyl and the structurally modified signal reporting group hemicyanine-thioxanthene. Compared with the recently reported probes, KYZ-GGT suggested practical and steady capability for monitoring the GGT level in the cellular, xenograft, induced as well as medicinal treatment HCC models. It realized the mitochondrial targeting intracellular imaging to reflect the GGT dynamics in the induction or medicinal treatment of HCC. In the xenograft and induced model mice with multiple factors, KYZ-GGT showed stable performance for visualizing the HCC status. In the medicinal treatment of the long-period-induced HCC model mice verified by the serum indexes and histopathological analysis, KYZ-GGT successfully imaged the medicinal treatment process of HCC with two marketed drugs (Sorafenib and Lenvatinib) respectively, with an applicative penetration depth. The information here was meaningful for investigating effective medicinal strategies for overcoming HCC.


Assuntos
Técnicas Biossensoriais , Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Animais , Camundongos , Carcinoma Hepatocelular/diagnóstico por imagem , Carcinoma Hepatocelular/tratamento farmacológico , gama-Glutamiltransferase/análise , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/tratamento farmacológico , Mitocôndrias/química
20.
J Colloid Interface Sci ; 608(Pt 3): 2672-2680, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34785054

RESUMO

Silver nanoparticles (Ag NPs) have attracted extensive research interest in bioimaging and biosensing due to their unique surface plasmon resonance. However, the potential aggregation and security anxiety of Ag NPs hinder their further application in biomedical field due to their high surface energy and the possible ionization. Here, binary heterogeneous nanocomplexes constructed from silver nanoparticles and carbon nanomaterials (termed as C-Ag NPs) were reported. The C-Ag NPs with multiple yolk structure were synthesized via a one-step solvothermal route using toluene as carbon precursor and dispersant. The hydrophilic functional groups on the carbon layer endowed the C-Ag NPs excellent chemical stability and water-dispersity. Results showed that C-Ag NPs demonstrated excellent safety profile and excellent biocompatibility, which could be used as an intracellular imaging agent. Moreover, the C-Ag NPs responded specifically to hydroxyl radicals and were expected to serve as a flexible sensor to efficiently detect diseases related to the expression of hydroxyl radicals in the future.


Assuntos
Nanopartículas Metálicas , Prata , Carbono , Radical Hidroxila , Imagem Óptica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA