Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Manage ; 351: 119832, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38128215

RESUMO

Phytoplankton is sensitive to changes in river ecosystems. Increasing dams disrupt the continuity of river ecosystems. However, the spatial impacts of dams on phytoplankton have not been well documented. In this study, using multiple statistical analyses, the relationships between environmental drivers and phytoplankton community structures in natural background reaches, reservoirs, and corresponding post-dam reaches were explored in the Jiulong River with multiple cascaded dams, which encountered eutrophication and algal blooms in the past 15 years. Results illustrated that damming exacerbated longitudinal discontinuities of phytoplankton communities. The relative abundance of phytoplankton varied in three types of river sections. The average phytoplankton abundance in the reservoirs (1.62 × 105 cell·L-1) was higher than those in the natural background reaches (5.15 × 104 cell·L-1) and the corresponding downstream reaches (4.55 × 104 cell·L-1). The total ß diversity ranged from 0.38 to 0.89 with an average of 0.64 and dominated by species replacement and least by species richness. The water environmental factors and hydraulic parameters rather than nutrients were more attributable to phytoplankton community variability in three river sections. These findings facilitate the management of rivers with multiple cascade dams by releasing environmental flows, jointly operating cascade hydropower stations, and developing nutrient reduction schemes to mitigate the negative impacts of damming in the river.


Assuntos
Ecossistema , Fitoplâncton , Estações do Ano , Rios/química , China , Monitoramento Ambiental
3.
ACS Nano ; 18(19): 12134-12145, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38687780

RESUMO

We explore the FeRh magnetic phase transition (MPT) and magnetic phase domain (MPD) with the introduction of surface acoustic waves (SAWs). The effects of the SAW pulses with different pulse widths and powers on resistance-temperature loops are investigated, revealing that the SAW can reduce the thermal hysteresis. Meanwhile, the SAW-induced comb-like antiferromagnetic (AFM) phase domains are observed. By changing the pulse width and SAW frequency, we further realize a writing-erasing process of the different comb-like AFM phase domains in the mixed-phase regime of the cooling transition branch. Resistance measurements also display the repeated SAW writing-erasing and the nonvolatile characteristic clearly. MPT paths are measured to demonstrate that short SAW pulses induce isothermal MPT and write magnetic phase patterns via the dynamic strain, whereas long SAW pulses erase patterns via the acoustothermal effect. The Preisach model is introduced to model the FeRh MPT under the SAW pulses, and the calculated results correspond well with our experiments, which reveals the SAW-induced energy modulation promotes FeRh MPT. COMSOL simulations of the SAW strain field also support our results. Our study not only can be used to reduce the thermal hysteresis but also extends the application of the SAW as a tool to write and erase AFM patterns for spintronics and magnonics.

4.
Sci Total Environ ; 947: 174564, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38972401

RESUMO

The bacterial community in sediment serves as an important indicator for assessing the environmental health of river ecosystems. However, the response of bacterial community structure and function in river basin sediment to different land use/cover changes has not been widely studied. To characterize changes in the structure, composition, and function of bacterial communities under different types of land use/cover, we studied the bacterial communities and physicochemical properties of the surface sediments of rivers. Surface sediment in cropland and built-up areas was moderately polluted with cadmium and had high nitrogen and phosphorus levels, which disrupted the stability of bacterial communities. Significant differences in the α-diversity of bacterial communities were observed among different types of land use/cover. Bacterial α-diversity and energy sources were greater in woodlands than in cropland and built-up areas. The functional patterns of bacterial communities were shown that phosphorus levels and abundances of pathogenic bacteria and parasites were higher in cropland than in the other land use/cover types; Urban activities have resulted in the loss of the denitrification function and the accumulation of nitrogen in built-up areas, and bacteria in forested and agricultural areas play an important role in nitrogen degradation. Differences in heavy metal and nutrient inputs driven by land use/cover result in variation in the composition, structure, and function of bacterial communities.


Assuntos
Bactérias , Monitoramento Ambiental , Sedimentos Geológicos , Rios , China , Rios/microbiologia , Rios/química , Sedimentos Geológicos/microbiologia , Sedimentos Geológicos/química , Fósforo/análise , Nitrogênio/análise , Agricultura , Microbiota , Poluentes Químicos da Água/análise , Ecossistema
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA