Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Manage ; 352: 119989, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38215595

RESUMO

Photocatalytic degradation of organic pollution by biochar was a sustainable strategy for waste water remediation, nevertheless, it still suffers drawbacks like low efficiency due to the poor photocatalytic properties of pristine biochar. Herein, amino groups were grafted on the edge sites/defects of biochar by Friedel-Crafts acylation to enhance the degradation of high concentration dye solutions. The results suggested that the amino groups played an important role in imparting photocatalytic properties to biochar. Owing to the strong Lewis basicity and electron-donating ability of amino groups, their interaction with oxygen-containing functional groups/aromatic structures in biochar was improved, which enhanced the electron exchange ability of biochar under visible light irradiation, resulting in excellent degradation performances of high concentration RhB (∼10 times faster than ungrafted biochar). In this work, amino-grafted garlic peel biochar delivered a new idea for the future direction of biochar-based photocatalysis in wastewater remediation.


Assuntos
Antioxidantes , Produtos Biológicos , Carvão Vegetal , Elétrons , Poluição Ambiental , Luz , Águas Residuárias
2.
Angew Chem Int Ed Engl ; : e202408487, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39134503

RESUMO

Non-activated linear α-olefins are valuable building blocks for organic transformation or olefin (co)polymerization, but they are recognized as textbook knowledge for non-homopolymerizable monomers under radical conditions. In this article, we disclose our effort to achieve an unprecedented library of all carbon-bonded sequence-regulated polymers via radical isomerization homopolymerization of α-olefin derivatives. The success of this distinctive polymerization is attributed to the remarkable efficiency and selectivity exhibited during the cyano group migration or hydrogen atom transfer, which is greatly enhanced by the precise engineering of their monomer structures. This polymerization process enables the elongation of polymer chains by five, six, or seven carbon atoms at each propagation step. These polymers, obtained through the cyano group migration or hydrogen atom transfer involved radical isomerization polymerization processes, emerge as promising candidates resembling polyethylene or polyacrylonitrile copolymers.

3.
Inorg Chem ; 62(4): 1580-1590, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36649499

RESUMO

A number of rare-earth metals and actinides have proven to be active in a wide variety of atom-efficient transformations. As compared to the related organometallic catalysts, the detailed mechanisms for the rare-earth metal-catalyzed reactions remain largely unexplored. Herein, the detailed catalyst activation process and reaction mechanisms of deoxygenative reduction of amides with pinacolborane (HBpin) catalyzed by Y[N(TMS)2]3 and La[N(TMS)2]3 complexes as well as a La4(O)acac10 cluster are investigated by density functional theory calculations. The M(III)-hemiaminal complex is disclosed to be the active catalyst for both the complexes and the cluster. During catalyst activation for both the Y and La complexes, the H-B bond polarity results in the formation of a transient M(III)-hydride intermediate, which is converted into an on-cycle M(III)-hemiaminal complex via facile migratory insertion. However, this kind of La(III)-hydride species cannot be formed for the La cluster. Starting from the M(III)-hemiaminal complex, the reaction proceeds via the ligand-centered hydride transfer mechanism that involves B-O bond formation, hydride transfer to B, C-O cleavage within the hemiaminal borane, hydride transfer to C, and σ-bond metathesis. The additional HBpin molecule is vital for the first hydride transfer that leads to the formation of [H2Bpin]- species. Our calculations reveal several important cooperative effects of the HBpin component during the hydride transfer processes. The improved mechanistic insights will be helpful for further development of selective C═O reduction.

4.
J Org Chem ; 87(22): 15608-15617, 2022 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-36321171

RESUMO

This article presents an exploration of stereospecificity and divergent reactivity of Pd-catalyzed α,α-disubstituted alkenyl hydrazones to synthesize 1,4-dienes in the Z configuration and vinylcyclopropane. We calculated the energy profiles of four α,α-disubstituted alkenyl hydrazones. The results show that the energy profiles of the whole catalytic cycle are basically the same before the syn-carbopalladation step. Subsequent syn-ß-C elimination yields skipping dienes, or direct ß-H elimination yields vinylcyclopropane. Current theoretical calculations reveal that the stereospecificity and the divergent reactivity of reactions result from the competition between syn-ß-C elimination and ß-H elimination. The C-C bond rotation and subsequent syn-ß-C elimination step control the stereospecificity of the reaction by changing the olefin stereostructure from E to Z configuration. The steric factor of α-substituted groups mediates the transformation between syn-ß-C elimination and ß-H elimination. The results are of great significance for the scientific design of substrates to achieve accurate synthesis of target products.


Assuntos
Hidrazonas , Paládio , Paládio/química , Estereoisomerismo , Alcenos/química , Catálise
5.
Inorg Chem ; 61(45): 18033-18043, 2022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-36315847

RESUMO

A novel mechanism of organobase-mediated Brook rearrangement and C-C coupling in the copper-catalyzed reductive coupling of benzaldehyde and benzophenone is proposed. The results demonstrate that this reaction proceeds mainly through five sequential elementary steps: transmetalation, carbonyl addition, σ-bond metathesis, Brook rearrangement, and C-C coupling. The organobases played a significant role not only in forming the active catalyst but also in mediating the Brook rearrangement and chemoselectivity in homo- and cross-coupling. Brook rearrangement mediated by organobases is more favored than that without organobases. In the C-C coupling step, the cation bridge combines two O atoms with the same electronegativity to form a pre-reaction complex. Moreover, a significant charge difference is a major factor in the selectivity of carbonyl addition and C-C coupling.


Assuntos
Benzaldeídos , Cobre , Catálise , Benzofenonas , Cátions
6.
Phys Chem Chem Phys ; 23(31): 16675-16689, 2021 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-34337631

RESUMO

CO2 hydrogenation into value-added chemicals not only offer an economically beneficial outlet but also help reduce the emission of greenhouse gases. Herein, the density functional theory (DFT) studies have been carried out on CO2 hydrogenation reaction for formamide production catalyzed by two different N-H ligand types of PNP iron catalysts. The results suggest that the whole mechanistic pathway has three parts: (i) precatalyst activation, (ii) hydrogenation of CO2 to generate formic acid (HCOOH), and (iii) amine thermal condensation to formamide with HCOOH. The lower turnover number (TON) of a bifunctional catalyst system in hydrogenating CO2 may attribute to the facile side-reaction between CO2 and bifunctional catalyst, which inhibits the generation of active species. Regarding the bifunctional catalyst system addressed in this work, we proposed a ligand participated mechanism due to the low pKa of the ligand N-H functional in the associated stage in the catalytic cycle. Remarkably, catalysts without the N-H ligand exhibit the significant transfer hydrogenation through the metal centered mechanism. Due to the excellent catalytic nature of the N-H ligand methylated catalyst, the N-H bond was not necessary for stabilizing the intermediate. Therefore, we confirmed that N-H ligand methylated catalysts allow for an efficient CO2 hydrogenation reaction compared to the bifunctional catalysts. Furthermore, the influence of Lewis acid and strong base on catalytic N-formylation were considered. Both significantly impact the catalytic performance. Moreover, the catalytic activity of PNMeP-based Mn, Fe and Ru complexes for CO2 hydrogenation to formamides was explored as well. The energetic span of Fe and Mn catalysts are much closer to the precious metal Ru, which indicates that such non-precious metal catalysts have potentially valuable applications.

7.
J Phys Chem A ; 125(23): 5031-5039, 2021 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-34080859

RESUMO

Transition metal-catalyzed three-component reactions of arenes, dienes, and carbonyls enable the convergent synthesis of homoallylic alcohols. Controlling regioselectivity is a central challenge for the difunctionalization of substituted 1,3-dienes in which multiple unbiased C═C bonds exist. Here, the mechanisms of Cp*Co(III)-catalyzed three-component C-H bond addition to terpenes and formaldehydes were investigated by density functional theory calculations. The reaction proceeds via sequential C(sp2)-H activation, migratory insertion, ß-hydride elimination, hydride reinsertion, and C-C bond formation to yield the final product. The migratory insertion is the rate- and regioselectivity-determining step of the overall reaction. We employed an energy decomposition approach to quantitatively dissect the contributions of different types of interactions to regioselectivity. For the 2-alkyl substituted 1,3-dienes, the orbital interactions in the 3,4-insertion are intrinsically more favorable as compared to that in the 4,3-insertion, while the stronger steric effects between metallacycle and 1,3-diene override the intrinsic electronic preference. However, the steric effects failed to rationalize the unfavorable 1,2-insertion that is analogous to 4,3-insertion and even bears smaller steric effects. The donor-acceptor interaction analysis indicates that orbital interactions between σCo-C and πC═C decreased significantly in the 1,2-insertion transition state, which leads to higher activation energy barriers. These insights into the dominant effects controlling regioselectivity will enable rational design of new catalysts for selective functionalization of dienes.

8.
Inorg Chem ; 59(19): 13962-13971, 2020 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-32929971

RESUMO

We synthesized and characterized three types of isostructural iodoargentates, [TM(phen)3]Ag2I4·3DMF (TM = Co (1), Ni (2), Zn (3)), [TM(phen)3]Ag3I5·DMF (TM = Co (4), Ni (5), Zn (6)), and [TM(phen)3]2Ag8I12·7DMF (TM = Co (7), Ni (8), Zn (9)) (phen = 1,10-phenanthroline, DMF = dimethylformamide) using transition-metal (TM) complexes as the structure-directing agents. Compounds 1-3 and compounds 4-6 feature zero-dimensional anionic [Ag4I8]4- and [Ag6I10]4- clusters, respectively. All of the [TM(phen)3]2+ cations in compounds 1-6 are arranged into a two-dimensional (2D) (6,3) net layer. Interestingly, compounds 1-3 are kinetically unstable in the mother solution, and they can be converted to compounds 4-6 via irreversible single-crystal to single-crystal transformation processes, respectively, with distinct changes in the crystal morphology and structure. Compounds 7-9 feature one-dimensional (1D) zigzag chains constructed from [Ag8I12]4- units. The UV-vis diffuse reflectance measurements demonstrate that compounds 1-9 possess the characteristics of semiconductors with band gaps of 2.58-2.71 eV and visible-light-irradiation-induced photocatalytic activities. Especially, compound 3 possesses higher photocatalytic degradation activity toward crystal violet (CV) and rhodamine B (RhB) in comparison to P25 under identical conditions. Moreover, the mechanism study reveals that the TM complex cations make a great contribution to the photocatalytic activity.

9.
J Org Chem ; 84(17): 10690-10700, 2019 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-31419383

RESUMO

A computational mechanistic study has been performed on Pd(II)-catalyzed enantioselective reactions involving acetyl-protected aminomethyl oxazolines (APAO) ligands that significantly improved reactivity and selectivity in C(sp3)-H borylation. The results support a mechanism including initiation of C(sp3)-H bond activation generating a five-membered palladacycle and ligand exchange, followed by HPO42--promoted transmetalation. These resulting Pd(II) complexes further undergo sequential reductive elimination by coordination of APAO ligands and protonation to afford the enantiomeric products and deliver Pd(0) complexes, which will then proceed by oxidation and deprotonation to regenerate the catalyst. The C(sp3)-H activation is found to be the rate- and enantioselectivity-determining step, in which the APAO ligand acts as the proton acceptor to form the two enantioselectivity models. The results demonstrate that the diverse APAO ligands control the enantioselectivity by differentiating the distortion and interaction between the major and minor pathways.

10.
Inorg Chem ; 58(15): 10217-10226, 2019 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-31335128

RESUMO

The mechanisms of aminocarbonylations and alkoxycarbonylations in coupling of aminophenols with iodoarenes catalyzed by the bidentate phosphorus ligand Pd complexes were explored with theoretical calculations. The origins of chemoselective carbonylation mediated by ligands and bases were disclosed. According to our calculations, the bifurcation points of reaction pathways caused by different ligands and bases combinations are L1/L2Int5, a [DPPP/DIBPP]benzoylpalladium(II)iodide complex. The affinity of L1/L2Int5 and adducts (K2CO3 and DBU), as well as the substrate itself, are the predominant factors of switching from aminocarbonylation to alkoxycarbonylation. The results reveal that K2CO3 directly exchanges iodine with L1Int5 and assists in hydrogen transfer in the DPPP-K2CO3 combination, in which alkoxycarbonylation is more favorable than aminocarbonylation, while for the DIBPP-DBU combination, iodine exchange is achieved by means of the hydrogen bond formed between the carbonyl group on L2Int5 and the substrate amino H due to the influence of the ligand, and then iodine exchange occurs; subsequently DBU-assisted amino H transfers to complete the aminocarbonylation. The proton transfer is the step that determines the chemoselectivity in the DPPP-K2CO3 combination. The iodine exchange determines the chemoselectivity between aminocarbonylation and alkoxycarbonylation in the DIBPP-DBU one. These results would be helpful to deeply understand the roles of each component in a chemoselective reaction in a multicomponent complex system.

11.
J Comput Chem ; 39(29): 2432-2438, 2018 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-30351490

RESUMO

Recycle of thorium is an essential process in the thorium-uranium closed fuel cycle of molten salt reactor (MSR). Pyrochemical treatment of spent nuclear fuel using chloride molten salts as medium has been considered as a promising method. In this article, we performed molecular dynamics simulations on the ThCl4 LiCl molten salts using a polarizable force field parameterized by us from first-principles calculations. The microscopic structures and macroscopic properties at different compositions were investigated using the developed force field to understand the structure/property relationship in the mixture. The differences between ThCl4 LiCl and ThF4 LiF MSs are compared to understand the behaviors of Th4+ in the fluoride-chloride mixed media. In the molten fluorides, the coordination number of Th4+ is larger, and the resulting more shared anions lead to lower ThF dissociation barrier and shorter lifetime of the Th4+ first solvation shell. Our results also indicate the Pauling's structural rules for crystals can be used to rationalize the local structures in molten salts. © 2018 Wiley Periodicals, Inc.

12.
J Org Chem ; 83(8): 4545-4553, 2018 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-29569916

RESUMO

The introduction of a C═O, C═C, C═S, or C═N bond has emerged as an effective strategy for carbocycle synthesis. A computational mechanistic study of Rh(III)-catalyzed coupling of alkynes with enaminones, sulfoxonium ylides, or α-carbonyl-nitrones was carried out. Our results uncover the roles of dual directing groups in the three substrates and confirm that the ketone acts as the role of the directing group while the C═C, C═N, or C═S bond serves as the cyclization site. By comparing the coordination of the ketone versus the C═C, C═N, or C═S bond, as well as the chemoselectivity concerning the six- versus five-membered formation, a competition relationship is revealed within the dual directing groups. Furthermore, after the alkyne insertion, instead of the originally proposed direct reductive elimination mechanism, the ketone enolization is found to be essential prior to the reductive elimination. The following C(sp2)-C(sp2) reductive elimination is more favorable than the C(sp3)-C(sp2) formation, which can be explained by the aromaticity difference in the corresponding transition states. The substituent effect on controlling the selectivity was also discussed.

13.
Inorg Chem ; 57(5): 2804-2814, 2018 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-29446928

RESUMO

The mechanism of B(C6F5)3 promoted Cp*CoIII-catalyzed C-H functionalization was investigated in detail employing density functional theory (DFT). The formation free energy of every possible species in the multicomponent complex system was explored and the optimal active catalyst was screened out. The results uncover the role of B(C6F5)3 played in forming active catalyst is from the coordination with OAc-, but not from the formation of [I(C6F5)3B]-, and no acceleration effect is found in C-H activation as well as the formation of CoIII-carbene intermediate. Moreover, present theoretical results elucidate the Cp*CoIII-catalyzed C-H activation is mediated by imine N-coordination other than general proposed the sequence of N-deprotonation directed C-H activation. The metal-controlled C-H/N-H selectivity was then elucidated by insighting into [Cp*CoIIIOAc]+/[Cp*RhIIIOAc]+-catalyzed C-H and N-H activations, respectively.

14.
Inorg Chem ; 57(17): 10726-10735, 2018 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-30124291

RESUMO

A computational study of Cp*CoIII/RhIII-catalyzed carboamination/olefination of N-phenoxyacetamides with alkenes was carried out to elucidate the catalyst-controlled chemoselectivity. The reaction of the two catalysts shares a similar process that involves N-H and C-H activation as well as alkene insertion. Then the reaction bifurcates at the generated seven-membered metallacycle. For Cp*CoIII catalyst, the resulting metallacycle undergoes oxidation addition, reductive elimination, and protonation to yield the carboamination product exclusively. However, the Cp*RhIII catalyst could promote the subsequent olefination pathway via sequential ß-H elimination, reductive elimination, oxidation addition, and protonation, which enables the experimentally observed mixtures of both carboamination and olefination products. Our results uncover that the higher propensity for the ß-H-elimination of the Cp*RhIII than the Cp*CoIII catalyst in the olefination pathway could be responsible for the different selectivity and reactivity of the two catalysts.

15.
Phys Chem Chem Phys ; 20(24): 16641-16649, 2018 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-29873368

RESUMO

Fluorescent base analogues are of great importance as sensitive probes to detect the dynamic structures of DNA. In this research, the structural and photophysical properties of 13-mer oligonucleotides containing 4-aminophthalimide:2,4-diaminopyrimidine (4AP:DAP) (4AP0, 4AP') were characterized using both molecular dynamics simulations and quantum mechanics methods. The results indicate that the 4AP:DAP pair is well adapted to the overall B-DNA structure with higher stability and π-stacking abilities. The structural overlap of 4AP' and 4AP0 with the neighboring adenines only lies in the 5'-direction which results in the structure distortion from native B-DNA. Furthermore, the photophysical properties of the fluorescent base monomers and the B-DNA duplex were explored in detail. A very important result is that the hydrogen bond interaction does not have more effect on the fluorescence band apart from the slight red-shifts. In particular, the identity of the neighboring bases stacked with 4AP has an important effect on the fluorescence band. How the local environment can alter the photophysical features of the nucleobases when they are incorporated into the DNA duplex is elucidated.


Assuntos
DNA/química , Corantes Fluorescentes/química , Sondas Moleculares/química , Ftalimidas/química , Pirimidinas/química , Pareamento de Bases , DNA/genética , Fluorescência , Ligação de Hidrogênio , Simulação de Dinâmica Molecular , Sondas Moleculares/genética , Teoria Quântica
16.
Inorg Chem ; 56(10): 5984-5992, 2017 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-28471654

RESUMO

The reaction mechanism and the origins of regio- and enantioselectivities for Pd-catalyzed asymmetric arylation of aliphatic α-amino anion equivalents were investigated computationally. The results indicate that the reaction proceeds via mainly six sequential steps: deprotonation at α'-site of imine, coordination of α-amino anion to Pd-catalyst, oxidative addition, transmetalation, reductive elimination, as well as the final dissociation to release the product and regenerate the catalyst. The transmetalation is a key step on which both enantioselectivity and regioselectivity depend. The charge inversions of α- and α'-C atoms and the orbital interaction between Pd center and α-C in transmetalation step are responsible for the regioselectivity. Additionally, the intermediates before the dissociation step are critical in controlling the enantioselectivity. Noncovalent interactions analyses indicate that the enantioselectivity primarily arises from the CH···π interactions of isopropyl (iPr) groups with the fluorene and the benzene rings for PdL1-catalyzed reaction.

17.
Inorg Chem ; 56(9): 5392-5401, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-28414433

RESUMO

Recently, a new synthetic methodology of rhodium-catalyzed carboamination/cyclopropanation from the same starting materials at different reaction conditions has been reported. It provides an efficient strategy for the stereospecific formation of both carbon- and nitrogen-based functionalities across an alkene. Herein we carried out a detailed theoretical mechanistic exploration for the reactions to elucidate the switch between carboamination and cyclopropanation as well as the origin of the chemoselectivity. Instead of the experimentally proposed RhIII-RhI-RhIII catalytic mechanism, our results reveal that the RhIII-RhV-RhIII mechanism is much more favorable in the two reactions. The chemoselectivity is attributed to a combination of electronic and steric effects in the reductive elimination step. The interactions between alkene and the rhodacycle during the alkene migration insertion control the stereoselectivity in the carboamination reactions. The present results disclose a dual role of the methanol solvent in controlling the chemoselectivity.

18.
Phys Chem Chem Phys ; 19(16): 10413-10426, 2017 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-28379245

RESUMO

The detailed formation mechanisms of C-ribonucleoside and N-ribonucleoside via the reaction of 2,4,6-triaminopyrimidine (TAP) with (d)-ribose in aqueous solution were explored using density functional theory (DFT). The calculations indicate that five isomers (α,ß-furanose, α,ß-pyranose and open-chain aldehyde) of (d)-ribose can exist in equilibrium in aqueous solution. In contrast to cyclic isomers, an open-chain aldehyde is most feasible to react with TAP. In general, the formation pathways of C-nucleoside and N-nucleoside proceed in three steps including nucleophilic addition, dehydration and cyclization. The calculated apparent activation energies are 28.8 kcal mol-1 and 29.2 kcal mol-1, respectively. It suggests that both C- and N-nucleoside can be formed in aqueous solution, which is in good agreement with the experimental results. The water molecule plays an important "H-bridge" role by the hydrogen atom relay. Finally, a model structure of nucleobase, which will be beneficial for the C-C glycosidic bond formation, is proposed.


Assuntos
Modelos Moleculares , Pirimidinas/química , Ribonucleosídeos/química , Ribose/química , Carbono/química , Conformação Molecular , Nitrogênio/química , Pirimidinas/metabolismo , Ribonucleosídeos/metabolismo , Ribose/metabolismo , Termodinâmica , Água/química
19.
Phys Chem Chem Phys ; 19(20): 13153-13159, 2017 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-28489094

RESUMO

Ferroptosis is a recently discovered iron-dependent form of non-apoptotic cell death caused by the accumulation of membrane lipid peroxidation products, which is involved in various pathological conditions of the brain, kidney, liver and heart. A potent spiroquinoxalinamine derivative named liproxstatin-1 is discovered by high-throughput screening, which is able to suppress ferroptosis via lipid peroxide scavenging in vivo. Thus, molecular simulations, density functional theory (DFT) and variational transition-state theory with a small-curvature tunneling (SCT) coefficient are utilized to elucidate the detailed mechanisms of inactivation of a lipid peroxide radical by liproxstatin-1. H-atom abstracted from liproxstatin-1 by a CH3OO˙ radical occurs preferentially at the aromatic amine site (1'-NH) under thermodynamic and frontier molecular orbital analysis. The value of a calculated rate constant at 300 K is up to 6.38 × 103 M-1 S-1, indicating that the quantum tunneling effect is responsible for making a free radical trapping reaction more efficient by liproxstatin-1. The production of a liproxstatin-1 radical is easily regenerated to the active reduced form by ubiquinol in the body to avoid secondary damage by free radicals. A benzene ring and the higher HOMO energy are beneficial to enhance the lipid radical scavenging activity based on the structure-activity relationship study. Overall, the present results provide theoretical insights into the exploration of novel ferroptosis inhibitors.


Assuntos
Radicais Livres/química , Peróxidos Lipídicos/química , Quinoxalinas/química , Compostos de Espiro/química , Ferro/química , Ferro/metabolismo , Cinética , Simulação de Dinâmica Molecular , Fosfatidilcolinas/química , Teoria Quântica , Relação Estrutura-Atividade , Termodinâmica , Ubiquinona/análogos & derivados , Ubiquinona/química
20.
J Org Chem ; 81(24): 12482-12488, 2016 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-27978757

RESUMO

A facile copper-catalyzed radical aminoarylation of acrylamide with N-fluorobenzenesulfonimide (NFSI) is described. In the presence of copper acetate and 1,10-phenanthroline, a range of isoquinoline-1,3-diones can be constructed in moderate to good yields using NFSI as the amination reagent. Mechanistic studies demonstrated the reaction went through a sequential radical addition and cyclization pathway, which was supported by DFT calculations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA