RESUMO
In the inverse design of nanophotonic devices, mathematical optimization methods are generally used to perform local optimization in the design region to obtain the physical structure that meets design expectations. These methods usually produce good structures. However, due to the lack of physical considerations, most of the inverse design methods for nanophotonic devices use random initial topology as the initialization for optimization, which will inevitably cause a waste of computing resources. In this Letter, we propose a method based on a time-reversal technique to quickly determine the induced source of the physical structure in the design region and, thus, obtain the initial topological structure of the nanophotonic devices. For a nanophotonic 90°-bend waveguide and 90°-bend power splitter waveguide, numerical examples show that the initial topology obtained by our method not only has good initial performance, but also can be used as a reasonable initialization for inverse design.
RESUMO
Ferroptosis is a specific form of cell death characterized by excessive accumulation of cellular lipid peroxides. Ferroptosis is closely associated with various diseases, inhibition of which may help alleviate multi-organ injury caused by ischemia-reperfusion and enhance the anti-tumor effect by promoting the immunity of T cells. However, clinical approved drugs targeting ferroptosis process remain rare. In this study, we unexpectedly found that (R)-crizotinib, the first-generation ALK inhibitor, has potent inhibitory activity against ferroptosis across various cell lines. Moreover, its chiral molecule (S)-crizotinib, which was considered to share no common targets with (R)-crizotinib, also suppresses ferroptosis with an efficacy similar to that of (R)-crizotinib. We further demonstrated that both crizotinib enantiomers inhibit ferroptosis independently of their known targets, but through a common mechanism involving the targeting of AGPAT3-mediated synthesis of ether-linked polyunsaturated fatty acids (PE-O-PUFA), which are known to promote lipid-ROS generation and ferroptosis. In line with their activity in cell lines, (R)-crizotinib and (S)-crizotinib effectively mitigate renal ischemia-reperfusion injury in mice. Furthermore, the two compounds also inhibit lipid-ROS accumulation in CD8+ T cells in draining lymph nodes of B16-F10 subcutaneous xenograft mice, thereby promoting anti-tumor effects. Collectively, our study firstly reports a common activity shared by (R)-crizotinib and (S)-crizotinib in ferroptosis regulation. As a clinically approved drug, (R)-crizotinib has well-established pharmacokinetics and safety, which makes it a promising candidate for repurposing. Given the current lack of FDA-approved ferroptosis inhibitors, our findings suggest therapeutically repurposing (R)-crizotinib as well as its enantiomer (S)-crizotinib for treating ferroptosis-related diseases.
RESUMO
Ferroptosis is a nonapoptotic form of cell death characterized by iron-dependent lipid peroxidation and has been implicated in multiple pathological conditions. Glutathione peroxidase 4 (GPX4) plays an essential role in inhibiting ferroptosis by eliminating lipid peroxide using glutathione (GSH) as a reductant. In this study, we found Ellman's reagent DTNB and a series of disulfide compounds, including disulfiram (DSF), an FDA-approved drug, which protect cells from erastin-induced ferroptosis. Mechanistically, DTNB or DSF is conjugated to multiple cysteine residues in GPX4 and disrupts GPX4 interaction with HSC70, an adaptor protein for chaperone mediated autophagy, thus preventing GPX4 degradation induced by erastin. In addition, DSF ameliorates concanavalin A induced acute liver injury by suppressing ferroptosis in a mouse model. Our work reveals a novel regulatory mechanism for GPX4 protein stability control. We also discover disulfide compounds as a new class of ferroptosis inhibitors and suggest therapeutic repurposing of DSF in treating ferroptosis-related diseases.
Assuntos
Dissulfetos , Ferroptose , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Animais , Camundongos , Dissulfetos/farmacologia , Ácido Ditionitrobenzoico , Ferroptose/efeitos dos fármacos , Glutationa/metabolismo , Peroxidação de Lipídeos/fisiologia , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/efeitos dos fármacos , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Sulfetos , Dissulfiram/farmacologiaRESUMO
A growing number of human diseases have been found to be associated with aberrant DNA methylation, including cancer. Mutations targeting genes encoding DNA methyltransferase (DNMT), TET family of DNA demethylases, and isocitrate dehydrogenase (IDH1, IDH2) that produce TET inhibitory metabolite, 2-hyoxyglutarate (2-HG), are found in more than half of acute myeloid leukemia (AML). To gain new insights into the regulation of DNA de/methylation and consequence of its alteration in cancer development, we searched for genes which are mutated in a manner that is linked with gene mutations involved in DNA de/methylation in multiple cancer types. We found that recurrent CBFB-MYH11 fusions, which result in the expression of fusion protein comprising core-binding factor ß (CBFB) and myosin heavy chain 11 (MYH11) and are found in 6â¼8% of AML patients, occur mutually exclusively with DNMT3A mutations. Tumors bearing CBFB-MYH11 fusion show DNA hypomethylation patterns similar to those with loss-of-function mutation of DNMT3A. Expression of CBFB-MYH11 fusion or inhibition of DNMT3A similarly impairs the methylation and expression of target genes of Runt related transcription factor 1 (RUNX1), a functional partner of CBFB. We demonstrate that RUNX1 directly interacts with DNMT3A and that CBFB-MYH11 fusion protein sequesters RUNX1 in the cytoplasm, thereby preventing RUNX1 from interacting with and recruiting DNMT3A to its target genes. Our results identify a novel regulation of DNA methylation and provide a molecular basis how CBFB-MYH11 fusion contributes to leukemogenesis.
RESUMO
Shanghai is a Chinese megacity in the Yangtze River Delta area, one of the most polluted coastal areas in China. The inhabitants of Shanghai have very high aquatic product consumption rates. A risk-benefit assessment of the co-ingestion of fish nutrients and contaminants has not previously been performed for Shanghai residents. Samples of five farmed fish species (marine and freshwater) with different feeding habits were collected from Shanghai markets in winter and summer. Fatty acids, protein, mercury, cadmium, lead, copper, polychlorinated biphenyls, hexachlorocyclohexanes, and dichlorodiphenyltrichloroethanes were measured in liver, abdominal fat, and dorsal, abdominal, and tail muscles from fish. Tolerable daily intakes and benefit-risk quotients were calculated to allow the benefits and risks of co-ingesting n-3 long-chain polyunsaturated fatty acids and contaminants to be assessed according to the cancer slope factors and reference doses of selected pollutants. All of the contaminant concentrations in the muscle tissues were much lower than the national maximum limits, but the livers generally contained high Hg concentrations, exceeding the regulatory limit. The organic pollutant and n-3 long-chain polyunsaturated fatty acid concentrations correlated with the lipid contents of the fish tissues, and were higher in carnivorous marine fish than in omnivorous and herbivorous freshwater fish. The tolerable daily intakes, risk-benefit quotients, and current daily aquatic product intakes for residents of large Chinese cities indicated that the muscle tissues of most of the fish analyzed can be consumed regularly without significant contaminant-related risks to health. However, attention should be paid to the potential risks posed by dichlorodiphenyltrichloroethane in large yellow croaker and Hg in tilapia. Based on the results of this study, we encourage people to consume equal portions of marine and freshwater fish.