Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 183
Filtrar
1.
Fish Shellfish Immunol ; 145: 109351, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38171429

RESUMO

INTRODUCTION: Ulcerative colitis (UC) is an incurable and highly complex chronic inflammatory bowel disease (IBD) affecting millions of people worldwide. C-phycocyanin (C-PC) has been reported to possess outstanding anti-inflammatory activities and can effectively inhibit various inflammation-related diseases. Whether C-PC-derived bioactive peptides can inhibit intestinal inflammation is worth research and consideration. METHODS: The inhibition activities of three anti-neuroinflammatory peptides were evaluated using 2-4-6-trinitrobenzen sulfonic acid (TNBS)-induced zebrafish colitis model. Subsequently, the abilities of peptides to promote gastrointestinal motility were also examined. The changes in the intestinal pathological symptoms and ultrastructure of intestinal, reactive oxygen species (ROS) levels, and antioxidant enzymes were then determined after co-treatment with peptides and TNBS. Transcriptome analysis was used to investigate the underlying ameliorating TNBS-induced colitis effects molecular mechanisms of better activity peptide. Furthermore, quantitative reverse-transcription polymerase chain reaction and molecular docking techniques verified the mRNA sequencing results. RESULTS: Three peptides, MHLWAAK, MAQAAEYYR and MDYYFEER, which significantly inhibit macrophage migration, were synthesized. The results showed that these peptides could effectively alleviate the inflammatory responses in the TNBS-induced zebrafish model of colitis. In addition, co-treatment with TNBS and C-PC peptides could decrease ROS production and increase antioxidant enzyme activities in zebrafish larvae. Moreover, MHLWAAK had the most significantly therapeutic effects on colitis in zebrafish. The transcriptome analysis suggests that the effect of MHLWAAK on TNBS-induced colitis may be associated with the modulation of nuclear factor-erythroid 2-related factor 2 (Nrf2) and mitogen-activated protein kinase (MAPK) signaling pathway associated genes. In addition, molecular docking was conducted to study the prospective interaction between peptides and the key proteins that streamline the Nrf2 and MAPK signaling pathways. IL-6, JNK3, TNF-α, KEAP1-NRF2 complex and MAPK may be the core targets of MHLWAAK in treating colitis. CONCLUSION: The results suggested that the three C-PC-derived peptides could ameliorate TNBS-induced colitis in zebrafish, and these peptides might be a promising therapeutic candidate for UC treatment.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Animais , Peixe-Zebra/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Ficocianina/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Antioxidantes/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Simulação de Acoplamento Molecular , Estudos Prospectivos , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/metabolismo , Colite/induzido quimicamente , Colite/metabolismo , Colite/patologia , Sistema de Sinalização das MAP Quinases , Inflamação , Modelos Animais de Doenças
2.
Bioorg Chem ; 143: 107073, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38176375

RESUMO

Six new highly oxygenated and polycyclic andrastin-type meroterpenoids, namely, bialorastins A-F (1-6), were discovered from the culture of Penicillium bialowiezense CS-283, a fungus isolated from the deep-sea cold seep squat lobster Shinkaia crosnieri. The planar structures and absolute configurations of these compounds were determined by detailed analysis of spectroscopic data, single crystal X-ray diffraction, and TDDFT-ECD calculations. Structurally, bialorastin A (1) represents a rare 17-nor-andrastin that possesses an unusual 2-oxaspiro[4.5]decane-1,4-dione moiety with a unique 6/6/6/6/5 polycyclic system, while bialorastin B (2) is also a 17-nor-andrastin featuring a gem-propane-1,2-dione moiety. Additionally, bialorastins C-E (3-5) possess a 6/6/6/6/5/5 fused hexacyclic skeleton, characterized by distinctive 3,23-acetal/lactone-bridged functionalities. All isolated compounds were evaluated for their proangiogenic activities in transgenic zebrafish. Compound 3 exhibited significant proangiogenic activity, which notably increased the number and length of intersegmental blood vessels in model zebrafish in a dose-dependent manner at concentrations of 20 and 40 µM. On a molecular scale, the tested compounds were modeled through molecular docking to have insight into the interactions with the possible target VEGFR2. Mechanistically, RT-qPCR results revealed that compound 3 could promote angiogenesis via activating VEGFR2 and subsequently activating the downstream PI3K/AKT and MAPK signaling pathways. These findings indicate that 3 could be a potential lead compound for developing angiogenesis agents.


Assuntos
Penicillium , Terpenos , Peixe-Zebra , Animais , Fungos , Simulação de Acoplamento Molecular , Estrutura Molecular , Penicillium/química , Fosfatidilinositol 3-Quinases , Terpenos/química , Terpenos/farmacologia
3.
Bioorg Chem ; 150: 107552, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38901280

RESUMO

As one of the most widely distributed reactive oxygen species in vivo, hydrogen peroxide plays divergent and important roles in cell growth, differentiation and aging. When the level of hydrogen peroxide in the body is abnormal, it will lead to genome mutation and induce irreversible oxidative modification of proteins, lipids and polysaccharides, resulting in cell death or even disease. Therefore, it is significant to develop a sensitive and specific probe for real-time detection of hydrogen peroxide in vivo. In this study, the response mechanism between hydrogen peroxide and probe QH was investigated by means of HRMS and the probe showed good optical properties and high selectivity to hydrogen peroxide. Note that the evaluating of probe biocompatibility resulted from cytotoxicity test, behavioral test, hepatotoxicity test, cardiotoxicity test, blood vessel toxicity test, immunotoxicity test and neurotoxicity test using cell and transgenic zebrafish models with more than 20 toxic indices. Furthermore, the detection performance of the probe for hydrogen peroxide was evaluated by multiple biological models and the probe was proved to be much essential for the monitoring of hydrogen peroxide in vivo.

4.
J Appl Toxicol ; 44(3): 344-354, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37718569

RESUMO

Narcissin is a natural flavonoid from some edible and traditional medicinal plants. It has been proven to have multiple biological functions and exhibits potential therapeutic effects on hypertension, cancer, and Alzheimer's disease. However, the toxicity of narcissin is largely unknown. Here, we revealed that narcissin treatment led to reduced hatchability, increased malformation rate, shorter body length, and slowed blood flow in zebrafish. Furthermore, bradycardia, pericardial edema, increased SV-BA distance, diminished stroke volume, ejection fraction, and ventricular short-axis shortening rate were also found. A large accumulation of ROS, increased apoptotic cells, and histopathological changes were detected in the heart region. Moreover, the gene expression profiles and molecular docking analysis indicated that Nrf2/HO-1 and calcium signaling pathways were involved in narcissin-induced toxicity. In conclusion, here we provide the first evidence that demonstrates narcissin-induced developmental toxicity and cardiotoxicity in zebrafish via Nrf2/HO-1 and calcium signaling pathways for the first time.


Assuntos
Flavonóis , Fator 2 Relacionado a NF-E2 , Peixe-Zebra , Animais , Peixe-Zebra/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Cardiotoxicidade , Sinalização do Cálcio , Simulação de Acoplamento Molecular , Embrião não Mamífero , Estresse Oxidativo
5.
Mar Drugs ; 22(3)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38535441

RESUMO

Inflammatory bowel disease (IBD) is a chronic inflammatory bowel disease with unknown pathogenesis which has been gradually considered a public health challenge worldwide. Peptides derived from Rapana venosa have been shown to have an anti-inflammatory effect. In this study, peptide LLTRAGL derived from Rapana venosa was prepared by a solid phase synthesis technique. The protective effects of LLTRAGL were studied in a 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced zebrafish colitis model. The underlying mechanisms of LLTRAGL were predicted and validated by transcriptome, real-time quantitative PCR assays and molecular docking. The results showed that LLTRAGL reduced the number of macrophages migrating to the intestine, enhanced the frequency and rate of intestinal peristalsis and improved intestinal inflammatory damage. Furthermore, transcriptome analysis indicated the key pathways (NOD-like receptor signal pathway and necroptosis pathway) that link the underlying protective effects of LLTRAGL's molecular mechanisms. In addition, the related genes in these pathways exhibited different expressions after TNBS treatment. Finally, molecular docking techniques further verified the RNA-sequencing results. In summary, LLTRAGL exerted protective effects in the model of TNBS-induced colitis zebrafish. Our findings provide valuable information for the future application of LLTRAGL in IBD.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Perciformes , Caramujos , Animais , Peixe-Zebra , Simulação de Acoplamento Molecular , Peptídeos
6.
Mar Drugs ; 22(4)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38667765

RESUMO

Marine natural products are important sources of novel drugs. In this study, we isolated 4-hydroxyphenylacetic acid (HPA) from the marine-derived fungus Emericellopsis maritima Y39-2. The antithrombotic activity and mechanism of HPA were reported for the first time. Using a zebrafish model, we found that HPA had a strong antithrombotic activity because it can significantly increase cardiac erythrocytes, blood flow velocity, and heart rate, reduce caudal thrombus, and reverse the inflammatory response caused by Arachidonic Acid (AA). Further transcriptome analysis and qRT-PCR validation demonstrated that HPA may regulate autophagy by inhibiting the PI3K/AKT/mTOR signaling pathway to exert antithrombotic effects.


Assuntos
Autofagia , Fibrinolíticos , Fenilacetatos , Peixe-Zebra , Animais , Fenilacetatos/farmacologia , Autofagia/efeitos dos fármacos , Fibrinolíticos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Produtos Biológicos/farmacologia , Trombose/tratamento farmacológico , Modelos Animais de Doenças , Organismos Aquáticos
7.
Molecules ; 29(8)2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38675723

RESUMO

Silibinin is a flavonoid compound extracted from the seeds of Silybum marianum (L.) Gaertn. It has the functions of liver protection, blood-lipid reduction and anti-tumor effects. However, the potential molecular mechanism of silibinin against tumors is still unknown. This study aimed to assess the anti-tumor effects of silibinin in adenoid cystic carcinoma (ACC2) cells and Balb/c nude mice, and explore its potential mechanism based on network pharmacology prediction and experimental verification. A total of 347 targets interacting with silibinin were collected, and 75 targets related to the tumor growth process for silibinin were filtrated. Based on the PPI analysis, CASP3, SRC, ESR1, JAK2, PRKACA, HSPA8 and CAT showed stronger interactions with other factors and may be the key targets of silibinin for treating tumors. The predicted target proteins according to network pharmacology were verified using Western blot analysis in ACC2 cells and Balb/c nude mice. In the pharmacological experiment, silibinin was revealed to significantly inhibit viability, proliferation, migration and induce the apoptosis of ACC2 cells in vitro, as well as inhibit the growth and development of tumor tissue in vivo. Western blot analysis showed that silibinin affected the expression of proteins associated with cell proliferation, migration and apoptosis, such as MMP3, JNK, PPARα and JAK. The possible molecular mechanism involved in cancer pathways, PI3K-Akt signaling pathway and viral carcinogenesis pathway via the inhibition of CASP3, MMP3, SRC, MAPK10 and CDK6 and the activation of PPARα and JAK. Overall, our results provided insight into the pharmacological mechanisms of silibinin in the treatment of tumors. These results offer a support for the anti-tumor uses of silibinin.


Assuntos
Apoptose , Proliferação de Células , Farmacologia em Rede , Silibina , Silibina/farmacologia , Animais , Camundongos , Proliferação de Células/efeitos dos fármacos , Humanos , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Camundongos Nus , Ensaios Antitumorais Modelo de Xenoenxerto , Camundongos Endogâmicos BALB C , Movimento Celular/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/química , Antineoplásicos/farmacologia
8.
Glob Chang Biol ; 29(13): 3575-3590, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37021594

RESUMO

Enhancing soil organic carbon (SOC) sequestration and food supply are vital for human survival when facing climate change. Site-specific best management practices (BMPs) are being promoted for adoption globally as solutions. However, how SOC and crop yield are related to each other in responding to BMPs remains unknown. Here, path analysis based on meta-analysis and machine learning was conducted to identify the effects and potential mechanisms of how the relationship between SOC and crop yield responds to site-specific BMPs in China. The results showed that BMPs could significantly enhance SOC and maintain or increase crop yield. The maximum benefits in SOC (30.6%) and crop yield (79.8%) occurred in mineral fertilizer combined with organic inputs (MOF). Specifically, the optimal SOC and crop yield would be achieved when the areas were arid, soil pH was ≥7.3, initial SOC content was ≤10 g kg-1 , duration was >10 years, and the nitrogen (N) input level was 100-200 kg ha-1 . Further analysis revealed that the original SOC level and crop yield change showed an inverted V-shaped structure. The association between the changes in SOC and crop yield might be linked to the positive role of the nutrient-mediated effect. The results generally suggested that improving the SOC can strongly support better crop performance. Limitations in increasing crop yield still exist due to low original SOC level, and in regions where the excessive N inputs, inappropriate tillage or organic input is inadequate and could be diminished by optimizing BMPs in harmony with site-specific conditions.


Assuntos
Agricultura , Solo , Humanos , Solo/química , Agricultura/métodos , Carbono/análise , Sequestro de Carbono , China , Produtos Agrícolas
9.
Bioorg Chem ; 139: 106699, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37390633

RESUMO

A chemical investigation of the marine sponge Phakellia sp. from the South China Sea yielded five new cyclopeptides, phakellisins A-E (1-5). Structures of these compounds were determined by comprehensive analysis of 1D/2D NMR, HRESIMS/MS spectroscopic data and the advanced Marfey's method. All compounds were evaluated for their cytotoxic activity. Compound 1 showed a strong inhibitory activity against WSU-DLCL-2 cells with an IC50 value of 5.25 ± 0.2 µM by induction of G0/G1 cell cycle arrest and apoptosis.


Assuntos
Peptídeos Cíclicos , Poríferos , Animais , Cromatografia Líquida , Peptídeos Cíclicos/farmacologia , Peptídeos Cíclicos/química , Espectrometria de Massas em Tandem , Poríferos/química , Espectroscopia de Ressonância Magnética , Estrutura Molecular
10.
Planta Med ; 89(7): 764-772, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36940929

RESUMO

Seven main ginsenosides, including ginsenoside Re, ginsenoside Rb1, pseudoginsenoside F11, ginsenoside Rb2, ginsenoside Rb3, ginsenoside Rd, and ginsenoside F2, were identified by LC-QTOF MS/MS from root, leaf and flower extracts of Panax quinquefolius. These extracts promoted intersegmental vessel growth in a zebrafish model, indicating their potential cardiovascular health benefits. Network pharmacology analysis was then conducted to reveal the potential mechanisms of ginsenoside activity in the treatment of coronary artery disease. GO and KEGG enrichment analyses elucidated that G protein-coupled receptors played a critical role in VEGF-mediated signal transduction and that the molecular pathways associated with ginsenoside activity are involved in neuroactive ligand-receptor interaction, cholesterol metabolism, the cGMP-PKG signaling pathway, etc. Moreover, VEGF, FGF2, and STAT3 were confirmed as the major targets inducing proliferation of endothelial cells and driving the pro-angiogenic process. Overall, ginsenosides could be potent nutraceutical agents that act to reduce the risks of cardiovascular disease. Our findings will provide a basis to utilize the whole P. quinquefolius plant in drugs and functional foods.


Assuntos
Doença da Artéria Coronariana , Ginsenosídeos , Panax , Animais , Ginsenosídeos/farmacologia , Cromatografia Líquida , Espectrometria de Massas em Tandem , Cromatografia Líquida de Alta Pressão , Células Endoteliais , Fator A de Crescimento do Endotélio Vascular , Peixe-Zebra , Extratos Vegetais/farmacologia
11.
Chem Biodivers ; 20(3): e202200926, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36661244

RESUMO

Qilong capsule (QLC) originates from the famous "Buyang Huanwu decoction" prescription. It is representative of drugs used in China during recovery from stroke, but its neuroprotective mechanism of action remains obscure. HPLC was used to evaluate the similarity of 10 batches of QLC samples. Then we used a zebrafish model to study the neuroprotective effect of QLC. At 24 hpf, embryos were treated with QLC and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), and zebrafish were observed the neuronal length and the number of apoptotic cells in the brain at 72 hpf. At 120 hpf, we conduct zebrafish behavioural tests. We then also used qPCR to detect the expression of genes related to autophagy and apoptosis. The results showed that QLC significantly reduced the damage of dopaminergic neurons, the number of apoptotic cells in the brain, and alleviated motor disturbances induced by MPTP. We found that the mechanism of QLC activity involved decreased neuron cell death by inhibiting mitochondrial apoptosis and autophagy, promoting autophagy, degradation of alpha-synuclein, and neuron cell growth, and rescuing the function of neurons damaged by MPTP. The results indicated that QLC protected against MPTP-induced neuron injury and provided pharmacological evidence for clinical use of QLC.


Assuntos
Medicamentos de Ervas Chinesas , Fármacos Neuroprotetores , Peixe-Zebra , Animais , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/metabolismo , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/farmacologia , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Modelos Animais de Doenças , Neurônios Dopaminérgicos/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Fármacos Neuroprotetores/uso terapêutico
12.
J Prosthet Dent ; 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38036320

RESUMO

STATEMENT OF PROBLEM: Progressive peri-implant marginal bone loss and peri-implantitis have become a growing problem, but cross-sectional studies on their prevalence and risk factors are sparse. PURPOSE: The purpose of this cross-sectional clinical study was to investigate the prevalence of peri-implant marginal bone loss (MBL) and to identify systemic and local risk factors. MATERIAL AND METHODS: All adult patients who had received dental implants at the National Taiwan University Hospital (NTUH) during 2009 or 2010 were included. Their medical records were collected from the NTUH-integrative Medical Database. Consecutive follow-up radiographs were accessed for severity of MBL. The influence of each factor on MBL was estimated by using generalized estimating equations (GEEs). RESULTS: A total of 732 participants with 1873 implants were analyzed (mean follow-up: 5.30 years). The prevalence of MBL was 59.15% at the individual level and 49.55% at the implant level. The risk indicators identified for the presence of MBL were follow-up period of more than 2 years, diagnosis of diabetes within 12 months, radiation therapy (2 years after implant placement), implant location at maxillary canine (compared with mandibular molar), and implants from the Nobel Biocare brands (Brånemark System and NobelActive). A second multivariate GEE model confirmed the association of progressive MBL with implant location at the maxillary canine and mandibular incisor and implant brand or design. CONCLUSIONS: The identified risk indicators for MBL were longer follow-up period, diagnosis of diabetes, radiation therapy, implant location at maxillary canine, and implant brand or design.

13.
Zhongguo Zhong Yao Za Zhi ; 48(7): 1916-1926, 2023 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-37282968

RESUMO

The immunomodulatory effect of Saposhnikoviae Radix polysaccharide(SRP) was evaluated based on the zebrafish mo-del, and its mechanism was explored by transcriptome sequencing and real-time fluorescence-based quantitative PCR(RT-qPCR). The immune-compromised model was induced by navelbine in the immunofluorescence-labeled transgenic zebrafish Tg(lyz: DsRed), and the effect of SRP on the density and distribution of macrophages in zebrafish was evaluated. The effect of SRP on the numbers of macrophages and neutrophils in wild-type AB zebrafish was detected by neutral red and Sudan black B staining. The content of NO in zebrafish was detected by DAF-FM DA fluorescence probe. The content of IL-1ß and IL-6 in zebrafish was detected by ELISA. The differentially expressed genes(DEGs) of zebrafish in the blank control group, the model group, and the SRP treatment group were analyzed by transcriptome sequencing. The immune regulation mechanism was analyzed by Gene Ontology(GO)and Kyoto Encyclopedia of Genes and Genomes(KEGG)enrichment, and the expression levels of key genes were verified by RT-qPCR. The results showed that SRP could significantly increase the density of immune cells in zebrafish, increase the number of macrophages and neutrophils, and reduce the content of NO, IL-1ß, and IL-6 in immune-compromised zebrafish. The results of transcriptome sequencing analysis showed that SRP could affect the expression level of immune-related genes on Toll-like receptor pathway and herpes simplex infection pathway to affect the release of downstream cytokines and interferon, thereby completing the activation process of T cells and playing a role in regulating the immune activity of the body.


Assuntos
Interleucina-6 , Peixe-Zebra , Animais , Peixe-Zebra/genética , Interleucina-6/genética , Perfilação da Expressão Gênica , Citocinas/genética , Macrófagos , Transcriptoma
14.
Physiol Genomics ; 54(4): 141-152, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35285753

RESUMO

Sick sinus syndrome (SSS) is a term used for a variety of disorders defined by abnormal cardiac impulse formation and by abnormal propagation from the heart's sinoatrial node. In this study, we present a case from a Chinese family in which two closely related individuals had the symptoms and electrocardiographic evidence of SSS. We hypothesized that multiple individuals affected by the disease in the family was an indication of its genetic predisposition, and thus performed high-throughput sequencing for the participants from the family to detect potential disease-associated variants. One of the potential variants that was identified was a KCNG2 gene variant (NC_000018.9: g.77624068_77624079del). Further bioinformatic analysis showed that the observed variant may be a pathogenic mutation. The results of protein-protein docking and whole cell patch-clamp measurements implied that the deletion variant in KCNG2 could affect its binding the KV2.1 protein, and finally affect the function of Kv channel, which is an important determinant in regulation of heartbeat. Therefore, we inferred that the variable KCNG2 gene may affect the function of Kv channel by changing the binding conformation of KCNG2 and KV2.1 proteins and then adversely affect propagation from the sinoatrial node and cardiac impulse formation by changing the action potential repolarization of heart cells. In summary, our findings suggested that the dominant KCNG2 deletion variant in the examined Chinese family with SSS may be a potential disease-associated variant.


Assuntos
Canais de Potássio Corretores do Fluxo de Internalização , Síndrome do Nó Sinusal , Nó Sinoatrial , Predisposição Genética para Doença , Humanos , Canais de Potássio Corretores do Fluxo de Internalização/genética , Deleção de Sequência , Síndrome do Nó Sinusal/diagnóstico , Síndrome do Nó Sinusal/genética , Nó Sinoatrial/patologia , Sequenciamento Completo do Genoma
15.
Crit Rev Food Sci Nutr ; : 1-24, 2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36524397

RESUMO

Neurodegenerative diseases are common chronic diseases related to progressive damage to the nervous system. Current neurodegenerative diseases present difficulties and despite extensive research efforts to develop new disease-modifying therapies, there is still no effective treatment for halting the neurodegenerative process. Polyphenols are biologically active organic compounds abundantly found in various plants. It has been reported that plant-derived dietary polyphenols may improve some disease states and promote health. Emerging pieces of evidence indicate that polyphenols are associated with neurodegenerative diseases. This review aims to overview the potential neuroprotective roles of polyphenols in most common neurodegenerative disorders, including Alzheimer's disease, Parkinson's disease, epilepsy, and ischemic stroke.

16.
J Nat Prod ; 85(1): 276-283, 2022 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-35018782

RESUMO

Five new dolabellane diterpenes, clavularinlides A-E (1-5), and four new racemic elemane alkaloids, clavulacylides A-D (7-10), together with one known compound (6), were isolated from the soft coral Clavularia inflata collected in the South China Sea. Their structures were elucidated by 1D and 2D NMR, HRESIMS, calculated ECD, and DP4+ probability analyses. Compounds 1-7 showed anti-inflammatory activity in the zebrafish assay.


Assuntos
Antozoários/química , Diterpenos/química , Diterpenos/isolamento & purificação , Sesquiterpenos Monocíclicos/química , Sesquiterpenos Monocíclicos/isolamento & purificação , Animais , Anti-Inflamatórios/farmacologia , China , Diterpenos/farmacologia , Estrutura Molecular , Sesquiterpenos Monocíclicos/farmacologia , Análise Espectral/métodos , Peixe-Zebra
17.
Endocr Regul ; 56(2): 115-125, 2022 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-35489050

RESUMO

Objective. Single-walled carbon nanotubes (SWCNTs) are able to cross the blood-brain barrier, penetrate through the cell membrane, and accumulate in the cell nucleus, which purposefully allows their use in the health sciences as imaging probes and drug carriers in the cancer therapy. The aim of this study was to investigate the effect of low doses of SWCNTs on the expression of microRNAs associated with the cell proliferation and the brain development in zebrafish (Danio rerio) embryos. Methods. The zebrafish embryos (72 h post fertilization) were exposed to low doses of SWCNTs (2 and 8 ng/ml of medium) for 24 or 72 h. The microRNAs (miR-19, miR-21, miR-96, miR-143, miR-145, miR-182, and miR-206) expression levels were measured by quantitative polymerase chain reaction analysis. Results. It was found that low doses of SWCNTs elicited dysregulation in the expression of numerous cell proliferation and brain development-related microRNAs (miR-19, miR-21, miR-96, miR-143, miR-145, miR-182, and miR-206) in dose- (2 and 8 ng/ml of medium) as well as malformations in the zebrafish embryos brain development in a time-dependent (24 and 72 h) manner. Conclusion. Taken together, the present data indicate that the low doses of SWCNTs disturbed the genome functions and reduced the miR-19, miR-21, miR-96, miR-143, miR-145, miR-182, and miR-206 expression levels in dose- and time-dependent manners and interrupted the brain development in the zebrafish embryos indicating for both the genotoxic and the neurotoxic interventions.


Assuntos
MicroRNAs , Nanotubos de Carbono , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
18.
J Appl Toxicol ; 42(7): 1276-1286, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35102572

RESUMO

To investigate the neurotoxicity of pyrazinamide (PZA) to larval zebrafish, the PZA effects were assessed followed by its mechanism being explored. Same as isoniazid (INH), this compound is a first-line anti-tuberculosis drug and is suggested to be a risk that inducing nerve injury with long-term intoxication. Our findings indicated that zebrafish larvae obtained severe nerve damage secondary to constant immersion in various concentrations of PZA (i.e., 0.5, 1.0, and 1.5 mM) from 4 hpf (hours post fertilization) onwards until 120 hpf. The damage presented as dramatically decrease of locomotor capacity and dopaminergic neuron (DAN)-rich region length in addition to defect of brain blood vessels (BBVs). Moreover, PZA-administrated zebrafish showed a decreased dopamine (DA) level and downregulated expression of neurodevelopment-related genes, such as shha, mbp, neurog1, and gfap. However, secondary to 48-h restoration in fish medium (i.e., at 168 hpf), the neurotoxicity described above was prominently ameliorated. The results showed that PZA at the concentrations we tested was notably neurotoxic to larval zebrafish, and this nerve injury was restorable after PZA withdrawing. Therefore, this finding will probably provide a reference for clinical medication.


Assuntos
Pirazinamida , Peixe-Zebra , Animais , Antituberculosos/toxicidade , Isoniazida/toxicidade , Larva , Pirazinamida/toxicidade , Peixe-Zebra/metabolismo
19.
J Appl Toxicol ; 42(10): 1585-1602, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35315093

RESUMO

Airborne total suspended particles (TSP) and particulate matter (PM2.5 ) threaten global health and their potential impact on cardiovascular and respiratory diseases are extensively studied. Recent studies attest premature deaths, low birth weight, and congenital anomalies in the fetus of pregnant women exposed to air pollution. In this regard, only few studies have explored the effects of TSP and PM2.5 on cardiovascular and cerebrovascular development. As both TSP and PM2.5 differ in size and composition, this study is attempted to assess the variability in toxicity effects between TSP and PM2.5 on the development of cardiovascular and cerebrovascular systems and the underlying mechanisms in a zebrafish model. To explore the potential toxic effects of TSP and PM2.5 , zebrafish embryos/larvae were exposed to 25, 50, 100, 200, and 400 µg/ml of TSP and PM2.5 from 24 to 120 hpf (hours post-fertilization). Both TSP and PM2.5 exposure increased the rate of mortality, malformations, and oxidative stress, whereas locomotor behavior, heart rate, blood flow velocity, development of cardiovasculature and neurovasculature, and dopaminergic neurons were reduced. The expression of genes involved in endoplasmic reticulum stress (ERS), Wnt signaling, and central nervous system (CNS) development were altered in a dose- and time-dependent manner. This study provides evidence for acute exposure to TSP and PM2.5 -induced cardiovascular and neurodevelopmental toxicity, attributed to enhanced oxidative stress and aberrant gene expression. Comparatively, the effects of PM2.5 were more pronounced than TSP.


Assuntos
Poluição do Ar , Material Particulado , Poluição do Ar/efeitos adversos , Animais , Embrião não Mamífero , Feminino , Coração , Humanos , Larva/metabolismo , Material Particulado/toxicidade , Gravidez , Peixe-Zebra/metabolismo
20.
J Appl Toxicol ; 42(12): 1978-1985, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35857334

RESUMO

The clinical use of clozapine (CLZ), an atypical antipsychotic drug, was affected by side effects, such as cardiotoxicity. We selected normally developing zebrafish embryos to explore the antagonism of salvianolic acid A (SAA) against clozapine-induced cardiotoxicity. Embryos were treated with CLZ and SAA, and zebrafish phenotypes were observed at 24 h, 48 h, 72 h, and 96 h after treatment. The observed phenotypes included heart shape, heart rate, and venous sinus-arterial bulb (SV-BA) interval. Real-time quantitative PCR was used to detect changes in the expression of genes involved in heart inflammation, oxidative stress, and apoptosis. The results showed that SAA relieved pericardial edema, increased heart rate, and reduced the SV-BA interval. The PCR results also showed that when the zebrafish embryos were incubated with SAA and CLZ for 96 h, the expression of il-1b and nfkb2 were significantly downregulated, the expression of sod1 and cat were significantly upregulated, and the expressions of mcl1a and mcl1b were significantly downregulated. In summary, SAA can antagonize clozapine-induced cardiotoxicity.


Assuntos
Clozapina , Peixe-Zebra , Animais , Peixe-Zebra/metabolismo , Clozapina/toxicidade , Clozapina/metabolismo , Cardiotoxicidade , Embrião não Mamífero
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA