RESUMO
Nonlinear wave-matter interactions may give rise to solitons, phenomena that feature inherent stability in wave propagation and unusual spectral characteristics. Solitons have been created in a variety of physical systems and have had important roles in a broad range of applications, including communications, spectroscopy and metrology1-4. In recent years, the realization of dissipative Kerr optical solitons in microcavities has led to the generation of frequency combs in a chip-scale platform5-10. Within a cavity, photons can interact with mechanical modes. Cavity optomechanics has found applications for frequency conversion, such as microwave-to-optical or radio-frequency-to-optical11-13, of interest for communications and interfacing quantum systems operating at different frequencies. Here we report the observation of mechanical micro-solitons excited by optical fields in an optomechanical microresonator, expanding soliton generation in optical resonators to a different spectral window. The optical field circulating along the circumference of a whispering gallery mode resonator triggers a mechanical nonlinearity through optomechanical coupling, which in turn induces a time-varying periodic modulation on the propagating mechanical mode, leading to a tailored modal dispersion. Stable localized mechanical wave packets-mechanical solitons-can be realized when the mechanical loss is compensated by phonon gain and the optomechanical nonlinearity is balanced by the tailored modal dispersion. The realization of mechanical micro-solitons driven by light opens up new avenues for optomechanical technologies14 and may find applications in acoustic sensing, information processing, energy storage, communications and surface acoustic wave technology.
RESUMO
Soft actuators have assumed vital roles in a diverse number of research and application fields, driving innovation and transformative advancements. Using 3D molding of smart materials and combining these materials through structural design strategies, a single soft actuator can achieve multiple functions. However, it is still challenging to realize soft actuators that possess high environmental adaptability while capable of different tasks. Here, the response threshold of a soft actuator is modulated by precisely tuning the ratio of stimulus-responsive groups in hydrogels. By combining a heterogeneous bilayer membrane structure and in situ multimaterial printing, the obtained soft actuator deformed in response to changes in the surrounding medium. The response medium is suitable for both biotic and abiotic environments, and the response rate is fast. By changing the surrounding medium, the precise capture, manipulation, and release of micron-sized particles of different diameters in 3D are realized. In addition, static capture of a single red blood cell is realized using biologically responsive medium changes. Finally, the experimental results are well predicted using finite element analysis. It is believed that with further optimization of the structure size and autonomous navigation platform, the proposed soft microactuator has significant potential to function as an easy-to-manipulate multifunctional robot.
RESUMO
Cells release extracellular vesicles (EVs) as the carriers for intercellular communications to regulate life activities. Particularly, it is increasingly apparent that mechanical forces play an essential role in biological systems. The nanomechanical properties of EVs and their dynamics in cancer development are still not fully understood. Herein, with the use of atomic force microscopy (AFM), the nanomechanical signatures of EVs from the liquid biopsies of hematologic cancer patients were unraveled. Single native EVs were probed by AFM under aqueous conditions. The elastic and viscous properties of EVs were measured and visualized to correlate EV mechanics with EV geometry. Experimental results remarkably reveal the significant differences in EV mechanics among multiple myeloma patients, lymphoma patients, and healthy volunteers. The study unveils the unique nanomechanical signatures of EVs in hematologic cancers, which will benefit the studies of liquid biopsies for cancer diagnosis and prognosis with translational significance.
Assuntos
Vesículas Extracelulares , Neoplasias Hematológicas , Mieloma Múltiplo , Humanos , Microscopia de Força Atômica/métodos , Biópsia LíquidaRESUMO
Microsphere-assisted super-resolution imaging technology offers label-free, real-time dynamic imaging via white light, which has potential applications in living systems and the nanoscale detection of semiconductor chips. Scanning can aid in overcoming the limitations of the imaging area of a single microsphere superlens. However, the current scanning imaging method based on the microsphere superlens cannot achieve super-resolution optical imaging of complex curved surfaces. Unfortunately, most natural surfaces are composed of complex curved surfaces at the microscale. In this study, we developed a method to overcome this limitation through a microsphere superlens with a feedback capability. By maintaining a constant force between the microspheres and the sample, noninvasive super-resolution optical imaging of complex abiotic and biological surfaces was achieved, and the three-dimensional information on the sample was simultaneously obtained. The proposed method significantly expands the universality of scanning microsphere superlenses for samples and promotes their widespread use.
RESUMO
An active heterostructure with smart-response material used as "muscle" and inactive material as "skeleton" can deform over time to respond to external stimuli. 4D printing integrated with two-photon polymerization technology and smart material allows the material or characteristic distribution of active heterostructures to be defined directly at the microscale, providing a huge programmable space. However, the high degree of design freedom and the microscale pose a challenge to the construction of micromachines with customized shape morphing. Here, a reverse design strategy based on multi-material stepwise 4D printing is proposed to guide the structural design of biomimetic micromachines. Inspired by the piecewise constant curvature model of soft robot, a reverse design algorithm based on the Timoshenko model is developed. The algorithm can approximate 2D features to a constant-curvature model and determine an acceptable material distribution within the explored printing range. Three Chinese "Long" (Chinese dragon heralds of good fortune) designed by the strategy can deform to the customized shape. In addition, a microcrawler printed using this method can imitate a real inchworm gait. These results demonstrate that this method can be an efficient tool for the action or shape design of bionic soft microrobots or micromachines with predetermined functions.
RESUMO
The rapid development of micromanipulation technologies has opened exciting new opportunities for the actuation, selection and assembly of a variety of non-biological and biological nano/micro-objects for applications ranging from microfabrication, cell analysis, tissue engineering, biochemical sensing, to nano/micro-machines. To date, a variety of precise, flexible and high-throughput manipulation techniques have been developed based on different physical fields. Among them, optoelectronic tweezers (OET) is a state-of-art technique that combines light stimuli with electric field together by leveraging the photoconductive effect of semiconductor materials. Herein, the behavior of micro-objects can be directly controlled by inducing the change of electric fields on demand in an optical manner. Relying on this light-induced electrokinetic effect, OET offers tremendous advantages in micromanipulation such as programmability, flexibility, versatility, high-throughput and ease of integration with other characterization systems, thus showing impressive performance compared to those of many other manipulation techniques. A lot of research on OET have been reported in recent years and the technology has developed rapidly in various fields of science and engineering. This work provides a comprehensive review of the OET technology, including its working mechanisms, experimental setups, applications in non-biological and biological scenarios, technology commercialization and future perspectives.
Assuntos
Micromanipulação , Semicondutores , Micromanipulação/métodos , Eletricidade , Pinças ÓpticasRESUMO
Non-invasive deep-tissue three-dimensional optical imaging of live mammals with high spatiotemporal resolution is challenging owing to light scattering. We developed near-infrared II (1,000-1,700 nm) light-sheet microscopy with excitation and emission of up to approximately 1,320 nm and 1,700 nm, respectively, for optical sectioning at a penetration depth of approximately 750 µm through live tissues without invasive surgery and at a depth of approximately 2 mm in glycerol-cleared brain tissues. Near-infrared II light-sheet microscopy in normal and oblique configurations enabled in vivo imaging of live mice through intact tissue, revealing abnormal blood flow and T-cell motion in tumor microcirculation and mapping out programmed-death ligand 1 and programmed cell death protein 1 in tumors with cellular resolution. Three-dimensional imaging through the intact mouse head resolved vascular channels between the skull and brain cortex, and allowed monitoring of recruitment of macrophages and microglia to the traumatic brain injury site.
Assuntos
Lesões Encefálicas Traumáticas/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Neoplasias Colorretais/diagnóstico por imagem , Microscopia de Fluorescência/métodos , Imagem Óptica/métodos , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Animais , Encéfalo/irrigação sanguínea , Lesões Encefálicas Traumáticas/patologia , Neoplasias Colorretais/irrigação sanguínea , Neoplasias Colorretais/patologia , Feminino , Corantes Fluorescentes , Humanos , Imageamento Tridimensional , Raios Infravermelhos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Microsphere lenses can overcome the optical diffraction limit and can be used to observe features smaller than 200â nm under white light. Inclined illumination benefits from the second refraction of evanescent waves in the microsphere cavity, prohibiting the influence of background noise and improving the imaging resolution and quality of the microsphere superlens. Currently, there is a consensus that microspheres immersed in a liquid environment can improve imaging quality. Microsphere imaging under inclined illumination is performed using barium titanate microspheres immersed in an aqueous environment. However, the background medium of a microlens varies depending on its diverse applications. In this study, the effects of continuously changing background media on the imaging properties of microsphere lens under inclined illumination are investigated. The experimental results demonstrate that the axial position of the microsphere photonic nanojet changes with respect to the background medium. Consequently, owing to the refractive index of the background medium, the imaging magnification and the position of the virtual image change. Using a sucrose solution and polydimethylsiloxane with the same refractive index, we demonstrate that the imaging performance of microspheres is related to the refractive index rather than the background medium type. This study helps associate microsphere superlenses with a more universal application spectrum.
RESUMO
Water-responsive (WR) materials, due to their controllable mechanical response to humidity without energy actuation, have attracted lots of attention to the development of smart actuators. WR material-based smart actuators can transform natural humidity to a required mechanical motion and have been widely used in various fields, such as soft robots, micro-generators, smart building materials, and textiles. In this paper, the development of smart actuators based on different WR materials has been reviewed systematically. First, the properties of different biological WR materials and the corresponding actuators are summarized, including plant materials, animal materials, and microorganism materials. Additionally, various synthetic WR materials and their related applications in smart actuators have also been introduced in detail, including hydrophilic polymers, graphene oxide, carbon nanotubes, and other synthetic materials. Finally, the challenges of the WR actuator are analyzed from the three perspectives of actuator design, control methods, and compatibility, and the potential solutions are also discussed. This paper may be useful for the development of not only soft actuators that are based on WR materials, but also smart materials applied to renewable energy.
Assuntos
Nanotubos de Carbono , Água , Animais , Interações Hidrofóbicas e Hidrofílicas , PolímerosRESUMO
Tumors have posed a serious threat to human life and health. Researchers can determine whether or not cells are cancerous, whether the cancer cells are invasive or metastatic, and what the effects of drugs are on cancer cells by the physical properties such as hardness, adhesion, and Young's modulus. The atomic force microscope (AFM) has emerged as a key important tool for biomechanics research on tumor cells due to its ability to image and collect force spectroscopy information of biological samples with nano-level spatial resolution and under near-physiological conditions. This article reviews the existing results of the study of cancer cells with AFM. The main foci are the operating principle of AFM and research advances in mechanical property measurement, ultra-microtopography, and molecular recognition of tumor cells, which allows us to outline what we do know it in a systematic way and to summarize and to discuss future directions.
RESUMO
BACKGROUND: Combinatorial drug therapy for complex diseases, such as HSV infection and cancers, has a more significant efficacy than single-drug treatment. However, one key challenge is how to effectively and efficiently determine the optimal concentrations of combinatorial drugs because the number of drug combinations increases exponentially with the types of drugs. RESULTS: In this study, a searching method based on Markov chain is presented to optimize the combinatorial drug concentrations. In this method, the searching process of the optimal drug concentrations is converted into a Markov chain process with state variables representing all possible combinations of discretized drug concentrations. The transition probability matrix is updated by comparing the drug responses of the adjacent states in the network of the Markov chain and the drug concentration optimization is turned to seek the state with maximum value in the stationary distribution vector. Its performance is compared with five stochastic optimization algorithms as benchmark methods by simulation and biological experiments. Both simulation results and experimental data demonstrate that the Markov chain-based approach is more reliable and efficient in seeking global optimum than the benchmark algorithms. Furthermore, the Markov chain-based approach allows parallel implementation of all drug testing experiments, and largely reduces the times in the biological experiments. CONCLUSION: This article provides a versatile method for combinatorial drug screening, which is of great significance for clinical drug combination therapy.
Assuntos
Algoritmos , Simulação por Computador , Combinação de Medicamentos , Cadeias de Markov , ProbabilidadeRESUMO
Single-cell-scale selective manipulation and targeted capture play a vital role in cell behavior analysis. However, selective microcapture has primarily been performed in specific circumstances to maintain the trapping state, making the subsequent in situ characterization and analysis of specific particles or cells difficult and imprecise. Herein, we propose a novel method that combines femtosecond laser two-photon polymerization (TPP) micromachining technology with the operation of optical tweezers (OTs) to achieve selective and targeted capture of single particles and cells. Diverse ordered microcages with different shapes and dimensions were self-assembled by micropillars fabricated via TPP. The micropillars with high aspect ratios were processed by single exposure, and the parameters of the micropillar arrays were investigated to optimize the capillary-force-driven self-assembly process of the anisotropic microcages. Finally, single microparticles and cells were selectively transported to the desired microcages by manipulating the flexibly of the OTs in a few minutes. The captured microparticles and cells were kept trapped without additional forces.
Assuntos
Microesferas , Microtecnologia/métodos , Pinças Ópticas , Animais , Desenho de Equipamento , Fluoresceínas/metabolismo , Lasers , Camundongos , Células NIH 3T3RESUMO
PURPOSE: In the present study, we characterized the microbiomes of acute leukemia (AL) patients who achieved complete remission following remission induction chemotherapy (RIC) as outpatients, but who did not receive antimicrobials to treat or prevent febrile neutropenia. METHODS: Saliva and stool samples from 9 patients with acute myeloid leukemia, 11 patients with acute lymphoblastic leukemia, and 5 healthy controls were subjected to 16S ribosomal RNA sequencing at baseline and at 3 months following RIC. Only patients who achieved remission at 3 months post-treatment were included. We excluded anyone who used antimicrobials within 2 months of enrollment or at any time during the study period. RESULTS: At baseline, the relative abundances of species of Prevotella maculosa (P=0.001), Megasphaera micronuciformis (P=0.014), Roseburia inulinivorans (P=0.021), and Bacteroides uniformis (P=0.004) in saliva and Prevotella copri (P=0.002) in the stools of controls were significantly higher than in AL patients. Following RIC, the relative abundances of Eubacterium sp. oral clone DO008 (P=0.012), Leptotrichia sp. oral clone IK040 (P=0.002), Oribacterium sp. oral taxon 108 (P=0.029), Megasphaera micronuciformis (P=0.016), TM7 phylum sp. oral clone DR034 (P<0.001), Roseburia inulinivorans (P=0.034), Actinomyces odontolyticus (P=0.014), Leptotrichia buccalis (P=0.005), and Prevotella melaninogenica (P=0.046) in saliva and Lactobacillus fermentum (P=0.046), Coprococcus catus (P=0.050), butyrate-producing bacterium SS3/4 (P=0.013), and Bacteroides coprocola (P=0.027) in the stools of AL patients were significantly greater than in controls. CONCLUSION: Following RIC, several taxa are changed in stool and salvia samples of AL patients. Our results warrant future large-scale multicenter studies to examine whether the microbiota might have an effect on clinical outcomes of AL patients.
Assuntos
Antineoplásicos/uso terapêutico , Microbioma Gastrointestinal/efeitos dos fármacos , Quimioterapia de Indução , Leucemia/tratamento farmacológico , Leucemia/microbiologia , Adulto , Idoso , Bactérias/classificação , Bactérias/efeitos dos fármacos , Bactérias/genética , Bactérias/isolamento & purificação , Fezes/microbiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Boca/microbiologia , Filogenia , Adulto JovemRESUMO
Mechanics are intrinsic properties which appears throughout the formation, development, and aging processes of biological systems. Mechanics have been shown to play important roles in regulating the development and metastasis of tumors, and understanding tumor mechanics has emerged as a promising way to reveal the underlying mechanisms guiding tumor behaviors. In particular, tumors are highly complex diseases associated with multifaceted factors, including alterations in cancerous cells, tissues, and organs as well as microenvironmental cues, indicating that investigating tumor mechanics on multiple levels is significantly helpful for comprehensively understanding the effects of mechanics on tumor progression. Recently, diverse techniques have been developed for probing the mechanics of tumors, among which atomic force microscopy (AFM) has appeared as an excellent platform enabling simultaneously characterizing the structures and mechanical properties of living biological systems ranging from individual molecules and cells to tissue samples with unprecedented spatiotemporal resolution, offering novel possibilities for understanding tumor physics and contributing much to the studies of cancer. In this review, we survey the recent progress that has been achieved with the use of AFM for revealing micro/nanoscale mechanics in tumor development and metastasis. Challenges and future progress are also discussed.
Assuntos
Microscopia de Força Atômica/métodos , Metástase Neoplásica/fisiopatologia , Citoesqueleto de Actina/metabolismo , Animais , Membrana Basal/metabolismo , Adesão Celular/fisiologia , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Módulo de Elasticidade , Transição Epitelial-Mesenquimal/fisiologia , Exossomos/metabolismo , Matriz Extracelular/metabolismo , Matriz Extracelular/ultraestrutura , Humanos , Metástase Neoplásica/patologia , Metástase Neoplásica/ultraestrutura , Esferoides Celulares/metabolismoRESUMO
Super-resolution imaging using microspheres has attracted tremendous scientific attention recently because it has managed to overcome the diffraction limit and allowed direct optical imaging of structures below 100 nm without the aid of fluorescent microscopy. To allow imaging of specific areas on the surface of samples, the migration of the microspheres to specific locations on two-dimensional planes should be controlled to be as precise as possible. The common approach involves the attachment of microspheres on the tip of a probe. However, this technology requires additional space for the probe and could not work in an enclosed environment, e.g., in a microfluidic enclosure, thereby reducing the range of potential applications for microlens-based super-resolution imaging. Herein, we explore the use of laser trapping to manipulate microspheres to achieve super-resolution imaging in an enclosed microfluidic environment. We have demonstrated that polystyrene microsphere lenses could be manipulated to move along designated routes to image features that are smaller than the optical diffraction limit. For example, a silver nanowire with a diameter of 90 nm could be identified and imaged. In addition, a mosaic image could be constructed by fusing a sequence of images of a sample in an enclosed environment. Moreover, we have shown that it is possible to image Escherichia coli bacteria attached on the surface of an enclosed microfluidic device with this method. This technology is expected to provide additional super-resolution imaging opportunities in enclosed environments, including microfluidic, lab-on-a-chip, and organ-on-a-chip devices.
Assuntos
Dispositivos Lab-On-A-Chip , Pinças Ópticas , Microfluídica , Microscopia de Fluorescência , MicroesferasRESUMO
High-quality micro/nanolens arrays (M/NLAs) are becoming irreplaceable components of various compact and miniaturized optical systems and functional devices. There is urgent requirement for a low-cost, high-efficiency, and high-precision technique to manufacture high-quality M/NLAs to meet their diverse and personalized applications. In this paper, we report the one-step maskless fabrication of M/NLAs via electrohydrodynamic jet (E-jet) printing. In order to get the best morphological parameters of M/NLAs, we adopted the stable cone-jet printing mode with optimized parameters instead of the micro dripping mode. The optical parameters of M/NLAs were analyzed and optimized, and they were influenced by the E-jet printing parameters, the wettability of the substrate, and the viscosity of the UV-curable adhesive. Thus, diverse and customized M/NLAs were obtained. Herein, we realized the fabrication of nanolens with a minimum diameter of 120â nm, and NLAs with different parameters were printed on a silicon substrate, a cantilever of atomic force microscopy probe, and single-layer graphene.
RESUMO
We report a novel, to the best of our knowledge, method to rapidly characterize different kinds of cells and drug-treated cancer cells using a label-free biomarker of self-rotation in an optoelectrokinetics (OEK)-based microfluidic platform. OEK incorporates optics and electrokinetics into microfluidics, thereby offering a contact-free, label-free, and rapid approach to the cellular manipulation community. Self-rotational behaviors of four different kinds of cells were experimentally investigated by the frequency-sweeping of an AC bias potential in an optically induced nonuniform and irrotational electric field. The results revealed that these kinds of cells displayed a Gaussian distribution versus the AC frequency as well as different self-rotational speeds under the same conditions. Furthermore, the peak self-rotational speed varied from one kind of cell to another, with that of cancer cells higher than that of normal cells. In addition, MCF-7 cells treated by various concentrations of drug showed remarkably different self-rotational speeds. This finding suggests a high potential of developing a new label-free biomarker to rapidly distinguish different kinds of cancer cells and quantitatively monitor the response of cancer patients to various treatments.
Assuntos
Técnicas Citológicas/instrumentação , Dispositivos Lab-On-A-Chip , Fenômenos Ópticos , Equipamentos e Provisões Elétricas , Humanos , Células MCF-7RESUMO
Most microsphere-assisted super-resolution imaging experiments require a high-refractive-index microsphere to be immersed in a liquid to improve the super-resolution. However, samples are inevitably polluted by residuals in the liquid. This Letter presents a novel (to the best of our knowledge) method employing a microsphere lens group (MLG) that can easily achieve high-quality super-resolution imaging in air. The performance of this method is at par or better than that of the high-refractive-index microspheres immersed in liquid. In addition, the MLG generates a real image that is closely related to the photonic nanojet position of the microsphere super-lens. This imaging method is beneficial in microsphere imaging applications where liquids are impractical.
RESUMO
Cell separation has always been a key topic in academic research, especially in the fields of medicine and biology, due to its significance in diagnosis and treatment. Accurate, high-throughput and non-invasive separation of individual cells is key to driving the development of biomedicine and cellular biology. In recent years, a series of researches on the use of microfluidic technologies for cell separation have been conducted to solve bio-related problems. Hence, we present here a comprehensive review on the recent developments of microfluidic technologies for cell separation. In this review, we discuss several cell separation methods, mainly including: physical and biochemical method, their working principles as well as their practical applications. We also analyze the advantages and disadvantages of each method in detail. In addition, the current challenges and future prospects of microfluidic-based cell separation were discussed.