RESUMO
Lung carcinoma is the leading cause of cancer-related death worldwide. Chemotherapy remains the cornerstone of lung cancer treatment. Unfortunately, most types of cancer will develop resistance to chemotherapies over the time. One of the efforts to prevent the chemotherapy resistance is to find alternative chemotherapy drugs. Mogrol has been found to have antitumor activity. However, little is known about the pharmacological mechanisms underlying the suppression of mogrol on lung cancers. In this study, we observed that mogrol exposure significantly reduced the tumor volume and weight in tumor-bearing nude mice without obvious effect on body weight and cardiac function. Mogrol also significantly inhibited the proliferation and migration of lung cancer cells, including non-small-cell lung carcinoma cells, A549, H1299, H1975 and SK-MES-1 cells, with no obvious effect on control human bronchial epithelial cells (HBE). Further studies revealed that mogrol stirred excessive autophagy and autophagic flux, and finally, autophagic cell death, in lung cancer cells, which could be attenuated by autophagy inhibitors, 3-MA and chloroquine. Furthermore, mogrol significantly activated AMPK to induce autophagy and autophagic cell death, which could be abrogated by Compound C, an AMPK inhibitor. In addition, mogrol induced a significant increase in p53 activity in lung cancer cells, accompanied with cell cycle arrest and apoptosis, which could be weakened by p53 silence. Our results indicated that mogrol effectively suppressed lung cancer cells in vivo and in vitro by inducing the excessive autophagy and autophagic cell death via activating AMPK signaling pathway, as well as cell cycle arrest and apoptosis via activating p53 pathway.
Assuntos
Morte Celular Autofágica , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Apoptose , Autofagia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Pontos de Checagem do Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células , Pulmão/patologia , Neoplasias Pulmonares/metabolismo , Camundongos , Camundongos Nus , Proteína Supressora de Tumor p53/metabolismoRESUMO
Background: Lung cancer is one of the most common malignant tumors. Histone methylation was reported to regulate the expression of a variety of genes in cancer. However, comprehensive understanding of the expression profiles of histone methyltransferases and demethylases in lung cancer is still lacking. Methods: We analyzed the expression profile of methyltransferases and demethylases in non-small cell lung cancer (NSCLC) using TCGA and cBioportal databases. The mutation, expression level, association with survival and clinical parameters of histone methyltransferases and demethylases were determined. Results: We found overall upregulation of histone regulators in NSCLC. Mutation and copy number alteration of histone methylation related genes both exist in NSCLC. The expression of certain histone methylation related genes were significantly associated with overall survival and clinical attributes. Conclusions: Our result suggests that alteration of histone methylation is strongly involved in NSCLC. Some histone methylation related genes might serve as potential prognosis predictor or therapeutic target for NSCLC. The significance of some histone methylation related genes was contrary to the literature and awaits further validation.
Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Regulação Neoplásica da Expressão Gênica , Histona Desmetilases/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Neoplasias Pulmonares/genética , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Carcinoma Pulmonar de Células não Pequenas/patologia , Biologia Computacional , Metilação de DNA , Conjuntos de Dados como Assunto , Epigênese Genética , Perfilação da Expressão Gênica , Histonas/metabolismo , Humanos , Estimativa de Kaplan-Meier , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/patologia , Prognóstico , Processamento de Proteína Pós-Traducional , Regulação para CimaRESUMO
BACKGROUND: After the 2009 influenza A(H1N1)pdm09 pandemic, China established its first severe acute respiratory infections (SARI) sentinel surveillance system. METHODS: We analyzed data from SARI cases in 10 hospitals in 10 provinces in China from February 2011 to October 2013. RESULTS: Among 5,644 SARI cases, 330 (6%) were influenza-positive. Among these, 62% were influenza A and 38% were influenza B. Compared with influenza-negative cases, influenza-positive SARI cases had a higher median age (20.0 years vs.11.0, p=0.003) and were more likely to have at least one underlying chronic medical condition (age adjusted percent: 28% vs. 25%, p<0.001). The types/subtypes of dominant strains identified by SARI surveillance was almost always among dominant strains identified by the influenza like illness (ILI) surveillance system and influenza activity in both systems peaked at the same time. CONCLUSIONS: Data from China's first SARI sentinel surveillance system suggest that types/subtypes of circulating influenza strains and epidemic trends among SARI cases were similar to those among ILI cases.
Assuntos
Vírus da Influenza A/isolamento & purificação , Vírus da Influenza B/isolamento & purificação , Influenza Humana/epidemiologia , Vigilância de Evento Sentinela , Doença Aguda , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , China/epidemiologia , Feminino , Humanos , Lactente , Recém-Nascido , Vírus da Influenza A Subtipo H1N1/isolamento & purificação , Influenza Humana/diagnóstico , Influenza Humana/virologia , Masculino , Pessoa de Meia-Idade , Índice de Gravidade de Doença , Adulto JovemRESUMO
The excessive employment of acetaminophen (APAP) is capable of generating oxidative stress and apoptosis, which ultimately result in acute liver injury (ALI). Ganoderma lucidum polysaccharides (GLPs) exhibit hepatoprotective activity, yet the protective impact and potential mechanism of GLPs in relation to APAP-induced ALI remain ambiguous. The intention of this research was to scrutinize the effect of GLPs on APAP-induced ALI and to shed light on their potential mechanism. The results demonstrated that GLPs were capable of notably alleviating the oxidative stress triggered by APAP, as shown through a significant drop in the liver index, the activities of serum ALT and AST, and the amounts of ROS and MDA in liver tissue, along with an increase in the levels of SOD, GSH, and GSH-Px. Within these, the hepatoprotective activity at the high dose was the most conspicuous, and its therapeutic efficacy surpassed that of the positive drug (bifendate). The results of histopathological staining (HE) and apoptosis staining (TUNEL) indicated that GLPs could remarkably inhibit the necrosis of hepatocytes, the permeation of inflammatory cells, and the occurrence of apoptosis induced by APAP. Moreover, Western blot analysis manifested that GLPs enhanced the manifestation of Nrf2 and its subsequent HO-1, GCLC, and NQO1 proteins within the Nrf2 pathway. The results of qPCR also indicated that GLPs augmented the expression of antioxidant genes Nrf2, HO-1, GCLC, and NQO1. The results reveal that GLPs are able to set off the Nrf2 signaling path and attenuate ALI-related oxidative stress and apoptosis, which is a potential natural medicine for the therapy of APAP-induced liver injury.
Assuntos
Acetaminofen , Apoptose , Doença Hepática Induzida por Substâncias e Drogas , Fator 2 Relacionado a NF-E2 , Estresse Oxidativo , Polissacarídeos , Reishi , Acetaminofen/efeitos adversos , Estresse Oxidativo/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Reishi/química , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Fator 2 Relacionado a NF-E2/metabolismo , Animais , Masculino , Polissacarídeos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Camundongos , Polissacarídeos Fúngicos/farmacologia , Antioxidantes/farmacologiaRESUMO
In mink breeding, balanced selection for growth and reproductive features is essential because these traits are contradictory. The variables of total number born (TNB), number born alive (NBA), and body weight (BW) are highly valuable in terms of their importance in mink production. A comprehensive understanding of the molecular mechanisms that drive these features could offer vital insights into their genetic compositions. In the present study, the single-nucleotide polymorphism (SNP) genotypes of 219 minks were obtained via double digest restriction-site associated DNA sequencing (ddRAD-seq). Following several rounds of screening, about 2,415,121 high-quality SNPs were selected for a genome-wide association study (GWAS). The GWAS was used to determine BW and reproductive traits in pink-eyed white mink. It was suggested that SLC26A36, STXBP5L, and RPS 29 serve as potential genes for the total number of kits born (TNB), while FSCB, PDPN, NKX 2-1, NFKB 1, NFKBIA, and GABBR1 are key genes for the number born alive (NBA). Moreover, RTTN, PRPF31, MACROD1, and KYAT1 are possible BW genes based on association results and available functional data from gene and mammalian phenotype databases. These results offer essential information about the variety of mink and theoretical principles for applying mink breeds.
Assuntos
Estudo de Associação Genômica Ampla , Vison , Polimorfismo de Nucleotídeo Único , Reprodução , Animais , Vison/genética , Vison/crescimento & desenvolvimento , Reprodução/genética , Estudo de Associação Genômica Ampla/veterinária , Peso Corporal/genética , Feminino , Locos de Características Quantitativas , Masculino , Genótipo , Fenótipo , CruzamentoRESUMO
Rutin is a significant flavonoid with strong antioxidant property and various therapeutic effects. It plays a crucial role in disease prevention and human health maintenance, especially in anti-inflammatory, antidiabetic, hepatoprotective and cardiovascular effects. While many plants can synthesize and accumulate rutin, tartary buckwheat is the only food crop possessing high levels of rutin. At present, the rutin content (RC) is regarded as the key index for evaluating the nutritional quality of tartary buckwheat. Consequently, rutin has become the focus for tartary buckwheat breeders and has made considerable progress. Here, we summarize research on the rutin in tartary buckwheat in the past two decades, including its accumulation, biosynthesis and breakdown pathways, and regulatory mechanisms. Furthermore, we propose several strategies to increase the RC in tartary buckwheat seeds based on current knowledge. This review aims to provide valuable references for elevating the quality of tartary buckwheat in the future.
Assuntos
Fagopyrum , Rutina , Humanos , Rutina/metabolismo , Fagopyrum/metabolismo , Biofortificação , Flavonoides/metabolismo , Redes e Vias MetabólicasRESUMO
Starch serves as a crucial energy source for both plants and humans, predominantly synthesized and stored in endosperms, tubers, rhizomes, and cotyledons. Given the significant role of amylose in determining the quality of starchy crops, optimizing its content has become a key objective in current crop breeding efforts. Tartary buckwheat, a dicotyledonous plant, notably accumulates high levels of amylose in its endosperm, surpassing common cereals like rice and maize. However, the mechanisms underlying amylose accumulation, distribution, and regulation in Tartary buckwheat remain unclear. Here, amylose content was determined across various tissues and organs of Tartary buckwheat, identifying with the endosperm as the primary site for its biosynthesis and accumulation. RNA sequencing analysis of endosperms from different developmental stages identified 35 genes potentially involved in starch biosynthesis, with 13 genes showing high endosperm-specific expression, suggesting crucial roles in starch biosynthesis. Additionally, the transcription factor FtNF-YB2, which was specifically highly expressed in the endosperm, was discovered to enhance amylose synthesis. Moreover, promoters with potential endosperm-specific activity were identified, advancing our understanding of amylose regulation. Additionally, this study also demonstrates that brassinosteroids (BR) positively influence amylose biosynthesis in Tartary buckwheat endosperm. These findings provide essential insights into the mechanisms of understanding amylose biosynthesis, accumulation and regulation in Tartary buckwheat, offering significant implications for future breeding strategies.
Assuntos
Amilose , Endosperma , Fagopyrum , Regulação da Expressão Gênica de Plantas , Transcriptoma , Fagopyrum/genética , Fagopyrum/metabolismo , Amilose/metabolismo , Amilose/biossíntese , Amilose/genética , Endosperma/metabolismo , Endosperma/genética , Brassinosteroides/biossíntese , Brassinosteroides/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Perfilação da Expressão Gênica , Regiões Promotoras Genéticas , Amido/biossíntese , Amido/metabolismo , Amido/genéticaRESUMO
BACKGROUND: Metabolic syndrome (MetS), characterized by obesity, hyperglycemia, and abnormal blood lipid levels, is the pathological basis of many cardiovascular diseases. Gualou-Xiebai-Banxia-Tang decoction (GT) was first described in the Synopsis of the Golden Chamber, the earliest traditional Chinese medicine (TCM) monograph on diagnosis and treatment of miscellaneous diseases in China. According to TCM precepts, based on its ability to activate yang to release stagnation, activate qi to reduce depression, remove phlegm, and broaden the chest, GT has been used for more than 2,000 years to treat cardiovascular ailments. However, the molecular bases of its therapeutic mechanisms remain unclear. PURPOSE: The aim of this study was to identify lipid- and glucose-related hepatic genes differentially regulated by GT, and to assess GT impact on gut microbiota composition, in mice with high-fat diet (HFD)-induced MetS. STUDY DESIGN AND METHODS: ApoE-/- mice were fed with an HFD for 24 weeks, with or without concurrent GT supplementation, to induce MetS. At the study's end, body weight, visceral fat weight, blood lipid levels, and insulin sensitivity were measured, and histopathological staining was used to evaluate hepatosteatosis and intestinal barrier integrity. Liver transcriptomics was used for analysis of differentially expressed genes in liver and prediction of relevant regulatory pathways. Hepatic lipid/glucose metabolism-related genes and proteins were detected by RT-qPCR and western blotting. Gut microbial composition was determined by 16S rRNA gene sequencing. RESULTS: GT administration reduced MetS-related liver steatosis and weight gain, promoted insulin sensitivity and lipid metabolism, and beneficially modulated gut microbiota composition by decreasing the relative abundance of g_Lachnospiraceae_NK4A136_group and increasing the relative abundance of g_Alistipes. Liver transcriptomics revealed that GT regulated the expression of genes related to lipid and glucose metabolism (Pparγ, Igf1, Gpnmb, and Trem2) and of genes encoding chemokines/chemokine receptors (e.g. Cxcl9 and Cx3cr1). Significant, positive correlations were found for Ccr2, Ccl4, Ccr1, and Cx3cr1 and the g_Lachnospiraceae_NK4A136_group, and between Cxcl9, Ccr2, Ccl4, and Cx3cr1 and g_Desulfovibrio. GT treatment downregulated the protein expressions of SCD1 and CX3CR1 and upregulated the expression of PCK1 protein. CONCLUSION: GT supplementation alleviates HFD-induced MetS in mice by improving hepatic lipid and glucose metabolism. The anti-metabolic syndrome effects of GT may be related to the regulation of the gut-liver axis.
Assuntos
Dieta Hiperlipídica , Medicamentos de Ervas Chinesas , Microbioma Gastrointestinal , Fígado , Síndrome Metabólica , Animais , Medicamentos de Ervas Chinesas/farmacologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Microbioma Gastrointestinal/efeitos dos fármacos , Síndrome Metabólica/tratamento farmacológico , Masculino , Camundongos , Metabolismo dos Lipídeos/efeitos dos fármacos , Camundongos Endogâmicos C57BLRESUMO
Liver injury and progressive liver failure are severe life-threatening complications in sepsis, further worsening the disease and leading to death. Macrophages and their mediated inflammatory cytokine storm are critical regulators in the occurrence and progression of liver injury in sepsis, for which effective treatments are still lacking. l-Ascorbic acid 6-palmitate (L-AP), a food additive, can inhibit neuroinflammation by modulating the phenotype of the microglia, but its pharmacological action in septic liver damage has not been fully explored. We aimed to investigate L-AP's antisepticemia action and the possible pharmacological mechanisms in attenuating septic liver damage by modulating macrophage function. We observed that L-AP treatment significantly increased survival in cecal ligation and puncture-induced WT mice and attenuated hepatic inflammatory injury, including the histopathology of the liver tissues, hepatocyte apoptosis, and the liver enzyme levels in plasma, which were comparable to NLRP3-deficiency in septic mice. L-AP supplementation significantly attenuated the excessive inflammatory response in hepatic tissues of septic mice in vivo and in cultured macrophages challenged by both LPS and ATP in vitro, by reducing the levels of NLRP3, pro-IL-1ß, and pro-IL-18 mRNA expression, as well as the levels of proteins for p-I-κB-α, p-NF-κB-p65, NLRP3, cleaved-caspase-1, IL-1ß, and IL-18. Additionally, it impaired the inflammasome ASC spot activation and reduced the inflammatory factor contents, including IL-1ß and IL-18 in plasma/cultured superannuants. It also prevented the infiltration/migration of macrophages and their M1-like inflammatory polarization while improving their M2-like polarization. Overall, our findings revealed that L-AP protected against sepsis by reducing macrophage activation and inflammatory cytokine production by suppressing their activation in NF-κB and NLRP3 inflammasome signal pathways in septic liver.
Assuntos
Inflamassomos , Sepse , Camundongos , Animais , Inflamassomos/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Caspase 1/genética , Caspase 1/metabolismo , Interleucina-18 , Ativação de Macrófagos , Transdução de Sinais , Fígado/metabolismo , Ácido Ascórbico , Sepse/complicações , Sepse/tratamento farmacológico , Lipopolissacarídeos/farmacologiaRESUMO
Vascular remodeling plays a vital role in hypertensive diseases and is an important target for hypertension treatment. Irisin, a newly discovered myokine and adipokine, has been found to have beneficial effects on various cardiovascular diseases. However, the pharmacological effect of irisin in antagonizing hypertension-induced vascular remodeling is not well understood. In the present study, we investigated the protection and mechanisms of irisin against hypertension and vascular remodeling induced by angiotensin II (Ang II). Adult male mice of wild-type, FNDC5 (irisin-precursor) knockout, and FNDC5 overexpression were used to develop hypertension by challenging them with Ang II subcutaneously in the back using a microosmotic pump for 4 weeks. Similar to the attenuation of irisin on Ang II-induced VSMCs remodeling, endogenous FNDC5 ablation exacerbated, and exogenous FNDC5 overexpression alleviated Ang II-induced hypertension and vascular remodeling. Aortic RNA sequencing showed that irisin deficiency exacerbated intracellular calcium imbalance and increased vasoconstriction, which was parallel to the deterioration in both ER calcium dysmetabolism and ER stress. FNDC5 overexpression/exogenous irisin supplementation protected VSMCs from Ang II-induced remodeling by improving endoplasmic reticulum (ER) homeostasis. This improvement includes inhibiting Ca2+ release from the ER and promoting the re-absorption of Ca2+ into the ER, thus relieving Ca2+-dependent ER stress. Furthermore, irisin was confirmed to bind to its receptors, αV/ß5 integrins, to further activate the AMPK pathway and inhibit the p38 pathway, leading to vasoprotection in Ang II-insulted VSMCs. These results indicate that irisin protects against hypertension and vascular remodeling in Ang II-challenged mice by restoring calcium homeostasis and attenuating ER stress in VSMCs via activating AMPK and suppressing p38 signaling.
Assuntos
Angiotensina II , Hipertensão , Camundongos , Masculino , Animais , Angiotensina II/metabolismo , Fibronectinas/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Remodelação Vascular , Cálcio/metabolismo , Músculo Liso Vascular/metabolismo , Estresse do Retículo EndoplasmáticoRESUMO
The management of idiopathic granulomatous mastitis (IGM) poses a significant challenge because of its ambiguous etiology. This study aimed to investigate the efficacy of traditional Chinese medicine (TCM) combined with mammotome-assisted minimally invasive surgery (MAMIS) for the treatment of IGM. This retrospective cohort study included patients with IGM who underwent treatment at our hospital between January 2017 and June 2022. Patients treated with Shugan Sanjie decoction alone and preoperative Shugan Sanjie decoction combined with MAMIS were included in Groups A and B, respectively. We focused on the demographics, clinical characteristics, and outcomes of the patients in the 2 groups. A total of 124 female patients with an average age of 33.9 ± 3.6 years were included in the study. The demographic and clinical characteristics of patients in Groups A (n = 55) and B (n = 69) were similar (P > .05). However, there were significant differences between the 2 groups in terms of treatment duration, 1-year complete remission (CR), and recurrence. Group B showed shorter treatment time (11.7 ± 5.1 vs 15.3 ± 6.4 months, P = .001), higher 1-year CR (72.5% vs 45.5%, P = .002), and lower recurrence (7.2% vs 21.8%, P = .019) in comparison to Group A. Shugan Sanjie decoction promoted the shrinkage of breast lesions in patients with IGM. Combined with MAMIS, this treatment regimen shortened the treatment duration, accelerated the recovery process, and reduced the recurrence rate.
Assuntos
Mastite Granulomatosa , Humanos , Feminino , Adulto , Mastite Granulomatosa/tratamento farmacológico , Mastite Granulomatosa/cirurgia , Estudos Retrospectivos , Duração da Terapia , Procedimentos Cirúrgicos Minimamente Invasivos , Imunoglobulina MRESUMO
Amylose content (AC) is a significant quality trait in starchy crops, affecting their processing and application by the food and non-food industries. Therefore, fine-tuning AC in these crops has become a focus for breeders. Granule-bound starch synthase (GBSS) is the core enzyme that directly determines the AC levels. Several excellent reviews have summarized key progress in various aspects of GBSS research in recent years, but they mostly focus on cereals. Herein, we provide an in-depth review of GBSS research in monocots and dicots, focusing on the molecular characteristics, evolutionary relationships, expression patterns, molecular regulation mechanisms, and applications. We also discuss future challenges and directions for controlling AC in starchy crops, and found simultaneously increasing both the PTST and GBSS gene expression levels may be an effective strategy to increase amylose content.
Assuntos
Sintase do Amido , Sintase do Amido/genética , Sintase do Amido/metabolismo , Amilose , AmidoRESUMO
Irisin, a new exercise-mediated myokine, plays an important role in cardiovascular diseases by regulating cell energy metabolism. The induction of mitochondrial dysfunction and oxidative stress are the crucial mechanisms involved in doxorubicin-induced cardiomyocyte damage and cardiac dysfunction, but the mitochondria-dependent protective mechanisms of irisin in DOX-impaired cardiomyocytes are poorly understood. In this study, we exposed mouse-FNDC5 (irisin-precursor)-knockout, FNDC5 transgenic mice and their WT littermates, as well as cultured neonatal rat cardiomyocytes to DOX at a dosage of 4 mg/kg (once a week for 4 weeks) in vivo and 2 µM in vitro, respectively, then investigated how irisin alleviated DOX-induced oxidative stress and myocardial injury. Irisin knockout worsened, while irisin overexpression attenuated DOX-induced mortality, body weight loss, myocardial atrophy, damage and oxidative stress, cardiac remodeling and dysfunction in mice. Exogenous irisin supplementation (20 nM) also relieved these DOX-induced damage in cardiomyocytes. Intriguingly, irisin activated AMPK-Nrf2 signaling axis, and then up-regulated the transcription and protein expression of the downstream target genes of Nrf2, including mitochondrial fusion-related genes (mitofusin 1/2 and Optic Atrophy Type 1) and endogenous anti-oxidant genes, to promote mitochondrial fusion, improve mitochondrial dynamics and mitochondrial function, and reduced oxidative stress damage in DOX-induced cardiomyocytes. These results suggest that irisin protects the hearts from DOX-induced cardiotoxicity by improving mitochondrial dynamics and strengthening the endogenous anti-oxidant system through an AMPK-Nrf2 axis dependent manner, thus reducing DOX-induced oxidative stress injury in cardiomyocytes.
Assuntos
Antioxidantes , Cardiotoxicidade , Ratos , Camundongos , Animais , Cardiotoxicidade/metabolismo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Fibronectinas/genética , Fibronectinas/metabolismo , Dinâmica Mitocondrial , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Doxorrubicina/toxicidade , Miócitos Cardíacos/metabolismo , Estresse Oxidativo , Camundongos Transgênicos , Mecanismos de Defesa , ApoptoseRESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: Dingxin Recipe â ¢ (DXR â ¢) is a traditional Chinese medicine compound used for hyperlipidemia treatment in clinical practice. However, its curative effects and pharmacological mechanisms in hyperlipidemia have not been clarified to date. AIM OF THE STUDY: Studies have demonstrated that gut barrier was strongly implicated in lipid deposition. Based on gut barrier and lipid metabolism, this study examined the effects and molecular mechanisms of DXR â ¢ in hyperlipidemia. MATERIALS AND METHODS: The bioactive compounds of DXR â ¢ were detected by ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry, and its effects were evaluated in high-fat diet-fed rats. Specifically, the serum levels of lipids and hepatic enzymes were measured using the appropriate kits; colon and liver sections were obtained for histological analyses; gut microbiota and metabolites were analyzed by 16S rDNA sequencing and liquid chromatography-MS/MS; and the expression of genes and proteins was determined by real-time quantitative polymerase chain reaction and western blotting and immunohistochemistry, respectively. The pharmacological mechanisms of DXR â ¢ were further explored by fecal microbiota transplantation and short-chain fatty acid (SCFAs)-based interventions. RESULTS: DXR â ¢ treatment significantly downregulated serum lipid levels, mitigated hepatocyte steatosis and improved lipid metabolism. Moreover, DXR â ¢ improved the gut barrier, specifically by improving the physical barrier in the colon, causing part composition changes in the gut microbiota, and increasing the serum SCFAs level. DXR â ¢ also upregulated the expression of colon GPR43/GPR109A. Fecal microbiota transplantation from rats treated with DXR â ¢ downregulated part hyperlipidemia-related phenotypes, while the SCFAs intervention significantly improved most of the hyperlipidemia-related phenotypes and upregulated the expression of GPR43. Moreover, both DXR â ¢ and SCFAs upregulated the expression of colon ABCA1. CONCLUSION: DXR â ¢ protects against hyperlipidemia by improving the gut barrier, particularly the SCFAs/GPR43 pathway.
Assuntos
Hiperlipidemias , Ratos , Animais , Hiperlipidemias/tratamento farmacológico , Ratos Sprague-Dawley , Espectrometria de Massas em Tandem , Lipídeos , Ácidos Graxos Voláteis/metabolismoRESUMO
Spermatogenesis is a multistep biological process. In addition to somatic cells, it involves the orderly differentiation of dozens of spermatogenic cells. In this process, the regulatory networks between different spermatogenic cell populations are significantly different. RNA m6A regulators and miRNAs have been found to be closely related to spermatogenesis in recent years, and they are an important part of the above regulatory networks. Understanding gene expression and its rules in different spermatogenic cell populations will help in the in-depth exploration of their detailed roles in spermatogenesis. This study collected a public dataset of nonobstructive azoospermia (NOA). Based on the Johnson score, the testicular samples of NOA were divided into three types, Sertoli-cell only syndrome, meiotic arrest and postmeiotic arrest, which represented the loss of three germ cell populations, including whole spermatogenic cells, postmeiotic spermatogenic cells, and a mixture of late spermatids and spermatozoa, respectively. The aforementioned three types of testis data were compared with normal testis data, and the molecular expression characteristics of the abovementioned three germ cell populations were obtained. Our study showed that different germ cell populations have different active molecules and their pathways. In addition, RNA m6A regulators, including METTL3, IGF2BP2 and PRRC2A, and miRNAs, including hsa-let-7a-2, hsa-let-7f-1, hsa-let-7g, hsa-miR-15a, hsa-miR-197, hsa-miR-21, hsa-miR-30e, hsa-miR-32, hsa-miR-503 and hsa-miR-99a, also presented regulatory roles in almost all germ cells.
Assuntos
Azoospermia , MicroRNAs , Síndrome de Células de Sertoli , Azoospermia/genética , Humanos , Masculino , Metiltransferases/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Síndrome de Células de Sertoli/genética , Espermatogênese/genética , Testículo/metabolismoRESUMO
BACKGROUND: Neuroinflammation-mediated microglia polarization is a major process in various central nervous system (CNS) diseases. Endoplasmic reticulum (ER) stress contributes to the inflammatory signals as well as to microglia polarization in lipopolysaccharide (LPS) induced neuroinflammation. Ascorbic acid 6-palmitate (L-AP) has been broadly used as a dietary antioxidant in foods and demonstrated a strong inhibitory effect on 5-LOX; however, the specific anti-inflammation mechanisms remain unclear. In this study, we investigated the effects and possible mechanisms of L-AP on LPS-induced neuroinflammation in BV-2 cells. METHODS: Immortalized murine microglia cell line BV-2 cells were employed to assess the effect of L-AP to modulate microglia M1/M2 polarization in vivo, and the molecular mechanism was evaluated by qRT-PCR and Western blotting analysis. Molecular docking was used to predict the binding activity of L-AP with protein kinase R-like ER kinase (PERK). RESULTS: L-AP at 62.5 µM significantly modulated LPS-induced microglia M1/M2 polarization (increases of interleukin (IL)-10 and arginase-1 (Arg-1) transcriptions) independent of cell growth. Besides, L-AP at 62.5 µM significantly down-regulated glucose-regulated protein 78 (GRP78) and CCAAT/enhancer-binding homologous protein (CHOP) mRNA levels. Similar data were shown in the tunicamycin (TM) induced ER stress cells model. Moreover, the protective effect of L-AP on TM-induced microglia M1/M2 polarization was similar to that of 4-phenyl butyric acid (4-PBA), the ER stress inhibitor. Molecular docking results indicated L-AP might directly bind with PERK, with a binding affinity of -7.7 kcal/mol. A further study unveiled that L-AP notably inhibited LPS-induced PERK/ eukaryotic initiation factor 2α (elf2α) activation. CONCLUSION: Together, this study revealed that L-AP possessed its effect on the reconstruction of microglia M1/M2 polarization balance in LPS-stimulated BV-2 cells via modulating PERK/elF2α mediated ER stress.
Assuntos
Lipopolissacarídeos , Microglia , Camundongos , Animais , Lipopolissacarídeos/farmacologia , Estresse do Retículo Endoplasmático , Simulação de Acoplamento Molecular , Ácido Ascórbico/metabolismo , Ácido Ascórbico/farmacologia , Palmitatos/metabolismo , Palmitatos/farmacologiaRESUMO
Inflammatory immune response plays a key role in exercise-induced injury and healing; however, the relevant regulatory mechanisms of immune infiltration in exercise-induced injuries remain less studied. In the present study, a highly efficient system for screening immunity-related biomarkers and immunomodulatory ability of natural nutritional supplements was developed by integrating intelligent data acquisition, data mining, network pharmacology, and computer-assisted target fishing. The findings demonstrated that resting natural killer cells showed a higher rate of infiltration after exercise, whereas naive B cells and activated dendritic cells showed higher rate of infiltration before exercise. Four key genes, namely PRF1, GZMB, CCL4, and FASLG, were associated with exercise-induced injuries and inflammatory immune response. In total, 26 natural compounds including echinacoside, eugenol, tocopherol, and casuariin were predicted by using the HERB databases. Molecular docking analysis showed that GZMB, FASLG, and CCL4 bound to echinacoside. In vivo experiments in mice showed that after 30 min swimming, natural killer (NK) cells showed high infiltration rates, and the key genes (GZMB, PRF1, FASLG, and CCL4) were highly expressed; however, echinocandin significantly reduced the level of NK cells and decreased the expression of the four key genes post exercise. This natural nutritional supplement may act to protect against inflammatory injury after exercise by suppressing specific immune infiltration.
RESUMO
Stigmasterol (ST) has been shown to improve both lipid and bile acid (BA) metabolism. However, the mechanism(s) by which ST prevents dyslipidemia via BA metabolism, and the potential involvement of other regulatory mechanisms, remains unclear. Here, we found that ST treatment effectively alleviates lipid metabolism disorder induced by a high-fat diet (HFD). Moreover, we also show that fecal microbiota transplantation from ST-treated rats displays similar protective effects in rats fed on an HFD. Our data confirm that the gut microbiota plays a key role in attenuating HFD-induced fat deposition and metabolic disorders. In particular, ST reverses HFD-induced gut microbiota dysbiosis in rats by reducing the relative abundance of Erysipelotrichaceae and Allobaculum bacteria in the gut. In addition, ST treatment also modifies the serum and fecal BA metabolome profiles in rats, especially in CYP7A1 mediated BA metabolic pathways. Furthermore, chenodeoxycholic acid combined with ST improves the therapeutic effects in HFD-induced dyslipidemia and hepatic steatosis. In addition, this treatment strategy also alters BA metabolism profiles via the CYP7A1 pathway and gut microbiota. Taken together, ST exerts beneficial effects against HFD-induced hyperlipidemia and obesity with the underlying mechanism being partially related to both the reprogramming of the intestinal microbiota and metabolism of BAs in enterohepatic circulation. This study provides a theoretical basis for further study of the anti-obesity effects of ST and consideration of the gut microbiota as a potential target for the treatment of HFD-induced dyslipidemia.
RESUMO
BACKGROUND: Liver dysfunction and liver failure are serious complications of sepsis, directly leading to septic progression and death. Now, there is no specific therapeutics available for sepsis-related liver dysfunction. Prim-O-glucosylcimifugin (POG), a chromone richest in the roots of Saposhnikovia divaricata (Turcz.) Schischk, is usually used to treat headache, rheumatoid arthritis and tetanus. While, the underlying mechanisms of POG against sepsis-induced liver damage and dysfunction are still not clear. PURPOSE: To study the anti-sepsis effect of POG, and its pharmacological mechanism to protect liver injury by weakening the function of macrophages in septic livers through inhibiting NOD-like receptor protein 3 (NLRP3) inflammasome pathway. METHOD: In vivo experiments, septic mouse model was induced by cecal ligation and puncture (CLP), and then the mortality was detected, liver inflammatory damages and plasma biomarkers of liver injury were evaluated by histopathological staining and biochemical assays, respectively. In vitro experiments, mouse primary peritoneal macrophages were treated with lipopolysaccharide (LPS) and ATP, and then the activated-inflammasomes, macrophage migration and polarization were detected by ASC immunofluorescence staining, transwell and flow cytometry assays, respectively. NLRP3 inflammasome components NLRP3, caspase-1, IL-1ß and IL-18 protein expressions were detected using western blot assays, and the contents of IL-1ß and IL-18 were measured by ELISA assays. RESULTS: POG treatment significantly decreased the mortality, liver inflammatory damages, hepatocyte apoptosis and plasma biomarkers of liver injury in CLP-challenged male WT mice, which were comparable to those in ibuprofen (a putative anti-inflammatory drug)-supplemented septic male WT mice and septic NLRP3 deficient-male mice. POG supplementation significantly suppressed NLRP3 inflammasome activation in septic liver tissues and cultured macrophages, by significantly reducing NLRP3, cleaved-caspase-1, IL-1ß and IL-18 levels, the activated-inflammasome ASC specks, and macrophage infiltration and migration, as well as M1-like polarization, but significantly increasing M2-like polarization. These findings were similar to the pharmacological effects of ibuprofen, NLRP3 deficiency, and a special NLRP3 inhibitor, MCC950. CONCLUSION: POG protected against sepsis by inhibiting NLRP3 inflammasome-mediated macrophage activation in septic liver and attenuating liver inflammatory injury, indicating that it may be a potential anti-sepsis drug candidate.
Assuntos
Inflamassomos , Sepse , Trifosfato de Adenosina , Animais , Caspase 1/metabolismo , Cromonas , Ibuprofeno , Interleucina-18 , Lipopolissacarídeos , Fígado/metabolismo , Macrófagos/metabolismo , Masculino , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteínas NLR , Sepse/complicações , Sepse/tratamento farmacológico , Sepse/metabolismoRESUMO
Antlers offer a unique model for the study of whether regeneration recapitulates development in a mammalian organ. Research, to date, supports the full recapitulation in antler, but a recent report that subcutaneously transplanted (ST) pedicle periosteum (PP) failed to induce that ectopic antler formation could argue against recapitulation, as antlerogenic periosteum (AP) can readily do so. However, it was not clear in that study whether the result was caused by inability of the PP to interact with the skin or owing to failure to create the required close contact to it. This study was designed to clarify this uncertainty by adopting intradermal transplantation (IT) to achieve the required close contact without the need for significant mass expansion. The results showed that IT of 1/8 of the original AP mass or more was sufficient for antler induction, whereas ST of 1/4-AP or less could not do so within 2 years. The minimum amount of AP required for antler induction using the IT approach was somewhere between 1/8 and 1/12-AP (<30 mg). The results further demonstrated that IT of 62-84 mg PP failed to induce ectopic antler formation, even if the PP had fused with the surrounding skin. Because this mass of PP was 2-3 times the minimum amount of AP required for antler induction, we conclude that PP does not recapitulate AP in induction of ectopic antler development. It is likely that PP has been restricted for antler regeneration and lost the potential to initiate antler development.