Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 215
Filtrar
1.
EMBO J ; 43(12): 2424-2452, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38714893

RESUMO

The 16-subunit Constitutive Centromere-associated Network (CCAN)-based inner kinetochore is well-known for connecting centromeric chromatin to the spindle-binding outer kinetochore. Here, we report a non-canonical role for the inner kinetochore in directly regulating sister-chromatid cohesion at centromeres. We provide biochemical, X-ray crystal structure, and intracellular ectopic localization evidence that the inner kinetochore directly binds cohesin, a ring-shaped multi-subunit complex that holds sister chromatids together from S-phase until anaphase onset. This interaction is mediated by binding of the 5-subunit CENP-OPQUR sub-complex of CCAN to the Scc1-SA2 sub-complex of cohesin. Mutation in the CENP-U subunit of the CENP-OPQUR complex that abolishes its binding to the composite interface between Scc1 and SA2 weakens centromeric cohesion, leading to premature separation of sister chromatids during delayed metaphase. We further show that CENP-U competes with the cohesin release factor Wapl for binding the interface of Scc1-SA2, and that the cohesion-protecting role for CENP-U can be bypassed by depleting Wapl. Taken together, this study reveals an inner kinetochore-bound pool of cohesin, which strengthens centromeric sister-chromatid cohesion to resist metaphase spindle pulling forces.


Assuntos
Proteínas de Ciclo Celular , Centrômero , Cromátides , Proteínas Cromossômicas não Histona , Cinetocoros , Cinetocoros/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Proteínas Cromossômicas não Histona/genética , Humanos , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Cromátides/metabolismo , Cromátides/genética , Centrômero/metabolismo , Coesinas , Células HeLa , Ligação Proteica , Cristalografia por Raios X
2.
Nature ; 580(7802): 210-215, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32269352

RESUMO

Biological materials, such as bones, teeth and mollusc shells, are well known for their excellent strength, modulus and toughness1-3. Such properties are attributed to the elaborate layered microstructure of inorganic reinforcing nanofillers, especially two-dimensional nanosheets or nanoplatelets, within a ductile organic matrix4-6. Inspired by these biological structures, several assembly strategies-including layer-by-layer4,7,8, casting9,10, vacuum filtration11-13 and use of magnetic fields14,15-have been used to develop layered nanocomposites. However, how to produce ultrastrong layered nanocomposites in a universal, viable and scalable manner remains an open issue. Here we present a strategy to produce nanocomposites with highly ordered layered structures using shear-flow-induced alignment of two-dimensional nanosheets at an immiscible hydrogel/oil interface. For example, nanocomposites based on nanosheets of graphene oxide and clay exhibit a tensile strength of up to 1,215 ± 80 megapascals and a Young's modulus of 198.8 ± 6.5 gigapascals, which are 9.0 and 2.8 times higher, respectively, than those of natural nacre (mother of pearl). When nanosheets of clay are used, the toughness of the resulting nanocomposite can reach 36.7 ± 3.0 megajoules per cubic metre, which is 20.4 times higher than that of natural nacre; meanwhile, the tensile strength is 1,195 ± 60 megapascals. Quantitative analysis indicates that the well aligned nanosheets form a critical interphase, and this results in the observed mechanical properties. We consider that our strategy, which could be readily extended to align a variety of two-dimensional nanofillers, could be applied to a wide range of structural composites and lead to the development of high-performance composites.


Assuntos
Materiais Biomiméticos/química , Materiais Biomiméticos/síntese química , Nanocompostos/química , Resistência à Tração , Módulo de Elasticidade , Grafite/química , Hidrogéis/química , Nácar/química
3.
Nature ; 582(7811): E4, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32523122

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

4.
Proc Natl Acad Sci U S A ; 120(11): e2219170120, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36888657

RESUMO

The enrichment of histone H3 variant CENP-A is the epigenetic mark of centromere and initiates the assembly of the kinetochore at centromere. The kinetochore is a multi-subunit complex that ensures accurate attachment of microtubule centromere and faithful segregation of sister chromatids during mitosis. As a subunit of kinetochore, CENP-I localization at centromere also depends on CENP-A. However, whether and how CENP-I regulates CENP-A deposition and centromere identity remains unclear. Here, we identified that CENP-I directly interacts with the centromeric DNA and preferentially recognizes AT-rich elements of DNA via a consecutive DNA-binding surface formed by conserved charged residues at the end of N-terminal HEAT repeats. The DNA binding-deficient mutants of CENP-I retained the interaction with CENP-H/K and CENP-M, but significantly diminished the centromeric localization of CENP-I and chromosome alignment in mitosis. Moreover, the DNA binding of CENP-I is required for the centromeric loading of newly synthesized CENP-A. CENP-I stabilizes CENP-A nucleosomes upon binding to nucleosomal DNA instead of histones. These findings unveiled the molecular mechanism of how CENP-I promotes and stabilizes CENP-A deposition and would be insightful for understanding the dynamic interplay of centromere and kinetochore during cell cycle.


Assuntos
Centrômero , Proteínas Cromossômicas não Histona , Proteína Centromérica A/genética , Proteína Centromérica A/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Centrômero/genética , Centrômero/metabolismo , Histonas/genética , Histonas/metabolismo , Nucleossomos/genética , DNA/genética , Mitose , Autoantígenos/metabolismo
5.
Haemophilia ; 30(1): 214-223, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37902390

RESUMO

INTRODUCTION: Structural and chemical modifications of factor VIII (FVIII) products may influence their behaviour in FVIII activity assays. Hence, it is important to assess the performance of FVIII products in these assays. Efanesoctocog alfa is a new class of FVIII replacement therapy designed to provide both high sustained factor activity levels and prolonged plasma half-life. AIM: Evaluate the accuracy of measuring efanesoctocog alfa FVIII activity in one-stage clotting assays (OSAs) and chromogenic substrate assays (CSAs). METHODS: Human plasma with no detectable FVIII activity was spiked with efanesoctocog alfa or a full-length recombinant FVIII product comparator, octocog alfa, at nominal concentrations of 0.80 IU/mL, 0.20 IU/mL, or 0.05 IU/mL, based on labelled potency. Clinical haemostasis laboratories (N = 35) tested blinded samples using in-house assays. Data from 51 OSAs (14 activated partial thromboplastin time [aPTT] reagents) and 42 CSAs (eight kits) were analyzed. RESULTS: Efanesoctocog alfa activity was reliably (±25% of nominal activity) measured across all concentrations using OSAs with Actin FSL and multiple other aPTT reagents. Under- and overestimation of FVIII activity occurred with some reagents. No specific trend was observed for any class of aPTT activators. A two- to three-fold overestimation was consistently observed using CSAs and the OSA with Actin FS as the aPTT reagent across evaluated concentrations. CONCLUSION: Under- or overestimation occurred with some specific OSAs and most CSAs, which has been previously observed with other modified FVIII replacement products. Efanesoctocog alfa FVIII activity was measured with acceptable accuracy and reliability using several OSA methods and commercial plasma standards.


Assuntos
Hemofilia A , Hemostáticos , Apneia Obstrutiva do Sono , Humanos , Actinas , Testes de Coagulação Sanguínea/métodos , Compostos Cromogênicos/uso terapêutico , Fator VIII/uso terapêutico , Hemofilia A/tratamento farmacológico , Hemostasia , Hemostáticos/uso terapêutico , Indicadores e Reagentes , Laboratórios , Reprodutibilidade dos Testes , Apneia Obstrutiva do Sono/tratamento farmacológico
6.
Angew Chem Int Ed Engl ; 63(19): e202401845, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38470270

RESUMO

Vibrations with various frequencies in daily life and industry can cause health hazards and fatigue failure of critical structures, which requires the development of elastomers with high energy dissipation at desired frequencies. Current strategies relying on tuning characteristic relaxation time of polymer chains are mostly qualitative empirical methods, and it is difficult to precisely control damping performances. Here, we report a general strategy for constructing dynamic crosslinked polymer fluid gels that provide controllable ultrahigh energy dissipation. This is realized by dynamic-bond-mediated chain reptation of polymer fluids in a crosslinked network, where the characteristic time of chain reptation is dominated by the presence of well-defined dissociation time of dynamic bonds and almost independent of their molar mass. Using prototypical supramolecular polydimethylsiloxane elastomers, we demonstrate that dynamic crosslinked polymer fluid gels exhibit a controllable ultrahigh damping performance at desired frequencies (10-2~102 Hz), exceeding that of typical state-of-the-art silicone damping materials. Their shock absorption is over 300 % higher than that of commercial silicone rubber under the same impact force.

7.
Angew Chem Int Ed Engl ; : e202405880, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38870139

RESUMO

The sluggish kinetics of lithium-sulfur (Li-S) batteries severely impedes the application in extreme conditions. Bridging the electrodes, the electrolyte plays a crucial role in regulating kinetic behaviors of Li-S batteries. Herein, we report a multifunctional electrolyte additive of phenyl selenium bromide (PhSeBr) to simultaneously exert positive influences on both electrodes and the electrolyte. For the cathode, an ideal conversion routine with lower energy barrier can be attained by the redox mediator and homogenous catalyst derived from PhSeBr, thus improving the reaction kinetics and utilization of sulfur. Meanwhile, the presence of Se-Br bond helps to reconstruct a loose solvation sheath of lithium ions and a robust bilayer SEI with excellent ionic conductivity. The Li-S battery with PhSeBr displays superior long cycling stability with a reversible capacity of 1164.7 mAh g-1 after 300 cycles at 0.5 C rate. And the pouch cell exhibits a maximum capacity of 845.3 mAh and a capacity retention of 94.8 % after 50 cycles. Excellent electrochemical properties are also obtained in extreme conditions of high sulfur loadings and low temperature of -20 °C. This work demonstrates the versatility and practicability of the special additive, striking out an efficient but simple method to design advanced Li-S batteries.

8.
Angew Chem Int Ed Engl ; : e202410441, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38949087

RESUMO

Two-dimensional (2D) nanosheets-based membranes, which have controlled 2D nano-confined channels, are highly desirable for molecular/ionic sieving and confined reactions. However, it is still difficult to develop an efficient method to prepare large-area membranes with high stability, high orientation, and accurately adjustable interlayer spacing. Here, we present a strategy to produce metal ion cross-linked membranes with precisely controlled 2D nano-confined channels and high stability in different solutions using superspreading shear-flow-induced assembly strategy. For example, membranes based on graphene oxide (GO) exhibit interlayer spacing ranging from 8.0 ± 0.1 Å to 10.3 ± 0.2 Å, with a precision of down to 1 Å. At the same time, the value of the orientation order parameter (f) of GO membranes is up to 0.95 and GO membranes exhibit superb stability in different solutions. The strategy we present, which can be generalized to the preparation of 2D nano-confined channels based on a variety of 2D materials, will expand the application scope and provide better performances of membranes.

9.
J Am Chem Soc ; 145(16): 9198-9206, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37125453

RESUMO

Aryl-ketone derivatives have been acknowledged as promising organic photocatalysts for photosynthesis. However, they are limited by their photostability and have been less explored for photoinduced electron transfer (PET) applications. Herein we demonstrate a novel strategy to cover the shortage of aryl-ketone photocatalysts and control the photoreactivity by implanting symmetric aryl ketones into the conjugated covalent organic frameworks (COFs). To prove the concept, three comparative materials with the same topology and varied electronic structures were built, adopting truxenone knot and functionalized terephthalaldehyde linkers. Spectroscopic investigation and excited carrier dynamics analysis disclosed improvements in the photostability and electronic transfer efficiency as well as the structure-performance relationships toward N-aryl tetrahydroisoquinoline oxidation. This system provides a robust rule of thumb for designing new-generation aryl-ketone photocatalysts.

10.
BMC Plant Biol ; 23(1): 605, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38030999

RESUMO

BACKGROUND: Zostera marina L., or eelgrass, is the most widespread seagrass species throughout the temperate northern hemisphere. Unlike the dry seeds of terrestrial plants, eelgrass seeds must survive in water, and salinity is the key factor influencing eelgrass seed germination. In the present study, transcriptome and proteome analysis were combined to investigate the mechanisms via which eelgrass seed germination was stimulated by low salinity, in addition to the dynamics of key metabolic pathways under germination. RESULTS: According to the results, low salinity stimulated the activation of Ca2+ signaling and phosphatidylinositol signaling, and further initiated various germination-related physiological processes through the MAPK transduction cascade. Starch, lipids, and storage proteins were mobilized actively to provide the energy and material basis for germination; abscisic acid synthesis and signal transduction were inhibited whereas gibberellin synthesis and signal transduction were activated, weakening seed dormancy and preparing for germination; cell wall weakening and remodeling processes were activated to provide protection for cotyledon protrusion; in addition, multiple antioxidant systems were activated to alleviate oxidative stress generated during the germination process; ERF transcription factor has the highest number in both stages suggested an active role in eelgrass seed germination. CONCLUSION: In summary, for the first time, the present study investigated the mechanisms by which eelgrass seed germination was stimulated by low salinity and analyzed the transcriptomic and proteomic features during eelgrass seed germination comprehensively. The results of the present study enhanced our understanding of seagrass seed germination, especially the molecular ecology of seagrass seeds.


Assuntos
Germinação , Zosteraceae , Germinação/genética , Sementes/genética , Sementes/metabolismo , Proteoma/metabolismo , Transcriptoma , Zosteraceae/genética , Salinidade , Proteômica
11.
Arch Virol ; 168(10): 258, 2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37770803

RESUMO

Getah virus (GETV) is an emerging zoonotic virus that can infect humans and many mammals through mosquitoes. In this study, a novel pathogenic GETV strain, GDQY2022, was isolated from a pig farm in Guangdong Province, China. Sequence comparisons and phylogenetic analysis showed that GDQY2022 belongs to group III (GIII) and was most closely related to strain HeN202009-2, with 99.78% nucleotide sequence identity. Histopathological examination revealed significant pathological changes, such as widened alveolar septum in the lungs with mild congestion and hemorrhage. Differences in viral load between tissues were assessed by real-time RT-PCR, and significantly higher levels of GETV were found in abdominal lymph nodes and lungs of subclinically and clinically affected pigs (P < 0.01). This study provides valuable data for understanding the risk of GETV infection in the pig industry and a reliable basis for studying the pathogenic mechanisms and diagnostic surveillance of GETV.


Assuntos
Alphavirus , Culicidae , Humanos , Suínos , Animais , Filogenia , Virulência , China/epidemiologia , Mamíferos
12.
Nucleic Acids Res ; 49(5): 2946-2958, 2021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-33577684

RESUMO

RBM45 is an RNA-binding protein involved in neural development, whose aggregation is associated with neurodegenerative diseases, such as amyotrophic lateral sclerosis (ALS) and frontotemporal lobar dementia (FTLD). However, the mechanisms of RNA-binding and aggregation of RBM45 remain unelucidated. Here, we report the crystal structure of the N-terminal tandem RRM domains of human RBM45 in complex with single-stranded DNA (ssDNA). Our structural and biochemical results revealed that both the RRM1 and RRM2 of RBM45 recognized the GAC sequence of RNA/ssDNA. Two aromatic residues and an arginine residue in each RRM were critical for RNA-binding, and the interdomain linker was also involved in RNA-binding. Two RRMs formed a pair of antiparallel RNA-binding sites, indicating that the N-terminal tandem RRM domains of RBM45 bound separate GAC motifs in one RNA strand or GAC motifs in different RNA strands. Our findings will be helpful in the identification of physiologic targets of RBM45 and provide evidence for understanding the physiologic and pathologic functions of RBM45.


Assuntos
Proteínas do Tecido Nervoso/química , Proteínas de Ligação a RNA/química , RNA/química , Cristalografia por Raios X , DNA de Cadeia Simples/química , Humanos , Modelos Moleculares , Proteínas do Tecido Nervoso/metabolismo , Motivos de Nucleotídeos , Ligação Proteica , RNA/metabolismo , Motivo de Reconhecimento de RNA , Proteínas de Ligação a RNA/metabolismo
13.
Plant Dis ; 107(9): 2716-2723, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36774583

RESUMO

Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most severe diseases of wheat (Triticum aestivum L.) worldwide. Identification and characterization of resistance genes is advantageous to cultivating wheat varieties with durable resistance, which is the most economic and effective strategy to control stripe rust. Flanders, a common wheat cultivar released in France in 1986, confers effective resistance to stripe rust both at the seedling and adult plant stages. To elucidate the genetic basis of resistance in Flanders, F1, F2, and F2:3 generations derived from the cross Mingxian169 × Flanders were evaluated with the most prevalent Chinese Pst race CYR33 at the seedling stage. Inheritance analysis showed that the stripe rust resistance of Flanders was controlled by a single dominant gene, temporarily designated as YrFL. Bulked segregant analysis (BSA) combined with a wheat 660K single-nucleotide polymorphism (SNP) array indicated that polymorphic SNP markers were mainly located in the 0 to 150 Mb on wheat chromosome 5A. One hundred and eleven kompetitive allele-specific PCR (KASP) and 39 simple sequence repeat (SSR) markers on chromosome 5A were used to locate the YrFL. Linkage analysis mapped YrFL with 19 KASP and three SSR markers on wheat chromosome 5AS, and the genetic distances of the closest flanking markers AX108925494 and Xbarc56 to YrFL were 0.6 and 2.0 cM, respectively. Chromosome location, resistance characterization, and molecular marker positions indicated that YrFL is likely a novel stripe rust resistance gene on wheat chromosome 5AS and could be pyramided with other resistance genes to improve resistance in wheat breeding programs.


Assuntos
Basidiomycota , Triticum , Triticum/genética , Mapeamento Cromossômico , Marcadores Genéticos , Melhoramento Vegetal , Genes de Plantas , Cromossomos de Plantas/genética , Basidiomycota/genética
14.
Angew Chem Int Ed Engl ; 62(4): e202215034, 2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36448826

RESUMO

Strong adhesion of hydrogels on solids plays an important role in stable working for various practical applications. However, current hydrogel adhesion suffers from poor interfacial bonding with solid surfaces. Here, we propose a general superwetting-assisted interfacial polymerization (SAIP) strategy to robustly anchor hydrogels onto solids by forming high-density interfacial covalent bonds. The key of our strategy is to make the initiator fully contact solid surfaces via a superwetting way for enhancing the interfacial grafting efficiency. The designed anchored hydrogels show strong bulk failure with a high breaking strength of ≈1.37 MPa, different from weak interfacial failure that occurs in traditional strategies. The strong interfacial adhesion greatly enhances the stability of hydrogels against swelling destruction. This work opens up new inspirations for designing strongly anchored hydrogels from an interfacial chemistry perspective.

15.
Angew Chem Int Ed Engl ; 62(26): e202302765, 2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37114300

RESUMO

Hydrogels with pure hydrophilic network have received much attention due to their excellent low frictional behavior. However, the lubrication performance of hydrogels is not satisfied under high-speed condition due to the energy dissipation caused by adsorbed polymer chains as well as the failure of lubricating mechanisms accompanied by the transition of lubrication regime. In this work, interpenetrating double-network organohydrogels were constructed by combining hydrophilic and oleophilic polymer networks to modify the physiochemical properties of surface polymer chains, especially the chain mobility. The oleophilic polymer network spatially restricting the mobility of the swollen hydrophilic network in water, resulted in a low coefficient of friction (ca. 0.01) compared with conventional hydrogels at high speed (0.1 m s-1 ). Meanwhile, the organohydrogels had superior wear resistance, with almost no wear observed on the sliding track after 5 k cycles of rubbing at high speed. The design concept of organohydrogels can be extended to a variety of low-wear, highly-lubricating materials.


Assuntos
Hidrogéis , Polímeros , Polímeros/química , Lubrificação , Interações Hidrofóbicas e Hidrofílicas , Fricção , Hidrogéis/química
16.
Angew Chem Int Ed Engl ; 62(9): e202216874, 2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36460617

RESUMO

A long-standing quest in materials science has been the development of tough epoxy resin nanocomposites for use in numerous applications. Inspired by nacre, here we report tough and conductive MXene/epoxy layered bulk nanocomposites. The orientation of MXene lamellar scaffolds is enhanced by annealing treatment. The improved interfacial interactions between MXene lamellar scaffold and epoxy through surface chemical modification resulted in a synergistic effect. Tailoring the interlayer spacing of MXene nanosheets to a critical distance resulted in a fracture toughness about eight times higher than that of pure epoxy, surpassing other epoxy nanocomposites. Our nacre-inspired MXene/epoxy layered bulk nanocomposites also show high electrical conductivity that provides self-monitoring capability for structural integrity and exhibits an excellent electromagnetic interference shielding efficiency. Our proposed strategy provides an avenue for fabricating high-performance epoxy nanocomposites.

17.
Mov Disord ; 37(1): 171-181, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34519102

RESUMO

BACKGROUND: No comprehensive meta-analysis has ever been performed to assess the value of neurofilament light chain (NfL) as a biomarker in genetic ataxia. OBJECTIVE: We conducted a meta-analysis to summarize NfL concentration and evaluate its utility as a biomarker in genetic ataxia. METHODS: Studies were included if they reported NfL concentration of genetic ataxia. We used log (mean ± SD) NfL to describe mean raw value of NfL. The effect size of NfL between genetic ataxia and healthy controls (HC) was expressed by mean difference. Correlation between NfL and disease severity was calculated. RESULTS: We identified 11 studies of 624 HC and 1006 patients, here referred to as spinocerebellar ataxia (SCA1, 2, 3, 6, and 7), Friedreich ataxia (FRDA), and ataxia telangiectasia (A-T). The concentration of blood NfL (bNfL) elevated with proximity to expected onset, and progressively increased from asymptomatic to preclinical to clinical stage in SCA3. Compared with HC, bNfL levels were significantly higher in SCA1, 2, 3, and 7, FRDA, as well as A-T, and the difference increased with the advancing disease in SCA3. bNfL levels correlated with disease severity in SCA3. There was a significant correlation between bNfL and longitudinal progression in SCA3. Additionally, bNfL increased with age in HC, yet this is probably masked by higher disease-related effects on bNfL in genetic ataxia. CONCLUSIONS: bNfL can be used as a potential biomarker to predict disease onset, severity, and progression of genetic ataxia. Reference-value setting of bNfL should be divided according to age. © 2021 International Parkinson and Movement Disorder Society.


Assuntos
Ataxia Cerebelar , Ataxia de Friedreich , Ataxias Espinocerebelares , Biomarcadores , Humanos , Filamentos Intermediários
18.
Cerebellum ; 21(3): 358-367, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34264505

RESUMO

Spinocerebellar ataxias (SCAs) are a large group of hereditary neurodegenerative diseases characterized by ataxia and dysarthria. Due to high clinical and genetic heterogeneity, many SCA families are undiagnosed. Herein, using linkage analysis, WES, and RP-PCR, we identified the largest SCA36 pedigree in Asia. This pedigree showed some distinct clinical characteristics. Cognitive impairment and gaze palsy are common and severe in SCA36 patients, especially long-course patients. Although no patients complained of hearing loss, most of them presented with hearing impairment in objective auxiliary examination. Voxel-based morphometry (VBM) demonstrated a reduction of volumes in cerebellum, brainstem, and thalamus (corrected P < 0.05). Reduced volumes in cerebellum were also found in presymptomatic carriers. Resting-state functional MRI (R-fMRI) found reduced ReHo values in left cerebellar posterior lobule (corrected P < 0.05). Diffusion tensor imaging (DTI) demonstrated a reduction of FA values in cerebellum, midbrain, superior and inferior cerebellar peduncle (corrected P < 0.05). MRS found reduced NAA/Cr values in cerebellar vermis and hemisphere (corrected P < 0.05). Our findings could provide new insights into management of SCA36 patients. Detailed auxiliary examination are recommended to assess hearing or peripheral nerve impairment, and we should pay more attention to eye movement and cognitive changes in patients. Furthermore, for the first time, our multimodel neuroimaging evaluation generate a full perspective of brain function and structure in SCA36 patients.


Assuntos
Imagem de Tensor de Difusão , Ataxias Espinocerebelares , Cerebelo , Humanos , Imageamento por Ressonância Magnética , Linhagem , Ataxias Espinocerebelares/diagnóstico por imagem , Ataxias Espinocerebelares/genética
19.
Chemphyschem ; 23(5): e202100787, 2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-35146865

RESUMO

Density functional theory (DFT) methods are the working horse in screening new catalytic materials. They are widely used to predict trends in binding energies, which are then used to compare the activity of different materials. The binding strength of CO is an important descriptor to the CO2 reduction catalytic activity of the single transition metal atoms embedded on nitrogen-doped graphene (TM/NG). In this work, however, we show that CO binding strengths in different TM/NG has very different sensitivity to DFT methods. Specifically, Fe/NG CO binding energy changes dramatically with the percentage of exact exchange in the functional; Co/NG does less so, while Ni/NG nearly has no change. Such varying behaviors is a direct result of different local spin configurations, similar to the performance of DFT methods for metal porphyrin complexes. Therefore, caution should be exercised when using DFT binding energies for quantitative predictions in TM/NG single atom catalysis.


Assuntos
Grafite , Adsorção , Catálise , Grafite/química , Nitrogênio
20.
Soft Matter ; 18(32): 5934-5938, 2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-35942660

RESUMO

The rapid development of wearable devices is in urgent demand for materials with switchable adhesion both in air and aqueous environments. Herein, we report a thermoresponsive ionogel with switchable adhesion against various substrates both in air and aqueous environments. The switchable adhesion of ionogels is realized by a phase separation induced collapse of the polymer network and the subsequent extrusion of ionic liquids (ILs) on ionogel surfaces. The hydrophobic poly(butyl acrylate) (PBA) network and ILs endow the ionogels with excellent water-resistance ability, which enables the application of ionogels in aqueous environments. As a result, the adhesion strength of ionogels against rubber can reach an on/off ratio of 75-fold (45 kPa versus 0.6 kPa) and 7.7-fold (21 kPa versus 2.7 kPa) in air and aqueous environments, respectively. By varying the ratio of two structurally similar ILs in their blends, the responsive temperature of ionogels can be tuned within a wide temperature range from 32 °C to 100 °C. Furthermore, we show a demonstration of an underwater on demand capture and release by taking advantage of the switchable adhesion of ionogels. These nonvolatile ionogels with tunable responsive temperatures and high on/off adhesion strength ratio both in air and aqueous environments show broad applications in the fields related to wearable devices, soft robots and submersible sensors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA