Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; : e2405309, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39148192

RESUMO

Zinc-air batteries employing non-Pt cathodes hold significant promise for advancing cathodic oxygen reduction reaction (ORR). However, poor intrinsic electrical conductivity and aggregation tendency hinder the application of metal-organic frameworks (MOFs) as active ORR cathodes. Conductive MOFs possess various atomically dispersed metal centers and well-aligned inherent topologies, eliminating the additional carbonization processes for achieving high conductivity. Here, a novel room-temperature electrochemical cathodic electrodeposition method is introduced for fabricating uniform and continuous layered 2D bimetallic conductive MOF films cathodes without polymeric binders, employing the organic ligand 2,3,6,7,10,11-hexaiminotriphenylene (HITP) and varying the Ni/Cu ratio. The influence of metal centers on modulating the ORR performance is investigated by density functional theory (DFT), demonstrating the performance of bimetallic conductive MOFs can be effectively tuned by the unpaired 3d electrons and the Jahn-Teller effect in the doped Cu. The resulting bimetallic Ni2.1Cu0.9(HITP)2 exhibits superior ORR performance, boasting a high onset potential of 0.93 V. Moreover, the assembled aqueous zinc-air battery demonstrates high specific capacity of 706.2 mA h g-1, and exceptional long-term charge/discharge stability exceeding 1250 cycles.

2.
Nanoscale ; 13(25): 11112-11119, 2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34132306

RESUMO

Large-scale Ni-based nano-sized coordination polymers (Ni-nCPs) are facilely constructed by a self-assembled approach at room temperature and atmosphere pressure. In this strategy, we use only the environmentally friendly solvents of water and ethanol, and the synthesis of 2D Ni-nCPs via a self-assembly route appears close to the "green chemistry" concept. In addition, the morphologies of the Ni-nCPs can be easily adjusted by the water/ethanol ratio. Owing to its unique 2D ultrathin nature and large specific surface area, Ni-nCPs-1 achieves a great number of channels for the transport of electrons and ions and electrochemically redox active sites for a faradaic reaction. Therefore, battery-type Ni-nCPs-1 electrodes have a bright prospect in energy storage, and can reach an outstanding specific capacitance value as high as 1066.9 F g-1 at 1 A g-1. Additionally, the asymmetric supercapacitor (Ni-nCPs-1//active carbon) displays a high energy density of 47.9 W h kg-1 at a power density of 440 W kg-1 and an excellent long-term cycle stability. This work may open up a new path in advanced electrode materials for efficient and real-time energy storge applications.

3.
J Biol Chem ; 277(44): 42171-7, 2002 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-12194984

RESUMO

Chondrocyte proliferation is important for skeletal development and growth, but the mechanisms regulating it are not completely clear. Previously, we showed that syndecan-3, a cell surface heparan sulfate proteoglycan, is expressed by proliferating chondrocytes in vivo and that proliferation of cultured chondrocytes in vitro is sensitive to heparitinase treatment. To further establish the link between syndecan-3 and chondrocyte proliferation, additional studies were carried out in vivo and in vitro. We found that the topographical location of proliferating chondrocytes in developing chick long bones changes with increasing embryonic age and that syndecan-3 gene expression changes in a comparable manner. For in vitro analysis, mitotically quiescent chondrocytes were exposed to increasing amounts of fibroblast growth factor-2 (FGF-2). Proliferation was stimulated by as much as 8-10-fold within 24 h; strikingly, this stimulation was significantly prevented when the cells were treated with both fibroblast growth factor-2 (FGF-2) and antibodies against syndecan-3 core protein. This neutralizing effect was dose-dependent and elicited a maximum of 50-60% inhibition. To establish specificity of neutralizing effect, cultured chondrocytes were exposed to FGF-2, insulin-like growth factor-1, or parathyroid hormone, all known mitogens for chondrocytes. The syndecan-3 antibodies interfered only with FGF-2 mitogenic action, but not that of insulin-like growth factor-1 or parathyroid hormone. Protein cross-linking experiments indicated that syndecan-3 is present in monomeric, dimeric, and oligomeric forms on the chondrocyte surface. In addition, molecular modeling indicated that contiguous syndecan-3 molecules might form stable complexes by parallel pairing of beta-sheet segments within the ectodomain of the core protein. In conclusion, the results suggest that syndecan-3 is a direct and selective regulator of the mitotic behavior of chondrocytes and its role may involve formation of dimeric/oligomeric structures on their cell surface.


Assuntos
Condrócitos/fisiologia , Glicoproteínas de Membrana/fisiologia , Proteoglicanas/fisiologia , Animais , Divisão Celular , Células Cultivadas , Embrião de Galinha , Dimerização , Fator 2 de Crescimento de Fibroblastos/farmacologia , Fator de Crescimento Insulin-Like I/farmacologia , Glicoproteínas de Membrana/química , Modelos Moleculares , Hormônio Paratireóideo/farmacologia , Proteoglicanas/química , Sindecana-3
4.
Connect Tissue Res ; 44 Suppl 1: 92-6, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-12952180

RESUMO

Epithelial-mesenchymal interactions are required for tissue growth and gene expression patterns during odontogenesis. We showed previously that Sonic hedgehog (SHH) is detectable in both dental epithelium and mesenchyme, while Shh transcripts are present in dental epithelium only, suggesting that SHH functions as an autocrine signal in epithelium and a paracrine signal in mesenchyme. This hypothesis was tested here. We found by in situ hybridization that the SHH autocrine receptor Ptch-2 is indeed expressed in dental epithelium whereas the paracrine receptor Ptc is expressed in mesenchyme. Bovine bell stage tooth germs were microsurgically separated into epithelial and mesenchymal portions and the resulting tissue fragments were organ-cultured. In epithelium fragments cultured by themselves, gene expression of Shh and Gli-1 (a putative transcriptional mediator of hedgehog signaling) was significantly decreased in both inner dental epithelium and stratum intermedium layers; this was accompanied by a sharp drop in epithelial cell proliferation. However, in companion control tissue fragments containing both epithelium and mesenchyme, Shh and Gli-1 expression as well as cell proliferation were maintained. Treatment of dental epithelial or mesenchymal cell populations in monolayer cultures with exogenous recombinant SHH stimulated cell proliferation. Together, the data provide clear evidence that Shh is synthesized by dental epithelium, reaches the underlying mesenchyme, and appears to act as an autocrine mitogen for epithelial cells and a paracrine mitogen for mesenchymal cells, thus exerting crucial functions in tooth germ growth, morphogenesis, and tissue-tissue interactions of bell stage of odontogenesis.


Assuntos
Mitógenos/metabolismo , Odontogênese/fisiologia , Germe de Dente/metabolismo , Transativadores/metabolismo , Animais , Bovinos , Técnicas de Cultura de Células , Indução Embrionária/genética , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Hedgehog , Hibridização In Situ , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mitógenos/genética , Técnicas de Cultura de Órgãos , Receptores Patched , Receptor Patched-1 , Receptor Patched-2 , Receptores de Superfície Celular , Germe de Dente/embriologia , Transativadores/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteína GLI1 em Dedos de Zinco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA