Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Molecules ; 27(2)2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-35056853

RESUMO

Amanita poisoning is one of the most deadly types of mushroom poisoning. α-Amanitin is the main lethal toxin in amanita, and the human-lethal dose is about 0.1 mg/kg. Most of the commonly used detection techniques for α-amanitin require expensive instruments. In this study, the α-amanitin aptamer was selected as the research object, and the stem-loop structure of the original aptamer was not damaged by truncating the redundant bases, in order to improve the affinity and specificity of the aptamer. The specificity and affinity of the truncated aptamers were determined using isothermal titration calorimetry (ITC) and gold nanoparticles (AuNPs), and the affinity and specificity of the aptamers decreased after truncation. Therefore, the original aptamer was selected to establish a simple and specific magnetic bead-based enzyme linked immunoassay (MELISA) method for α-amanitin. The detection limit was 0.369 µg/mL, while, in mushroom it was 0.372 µg/mL and in urine 0.337 µg/mL. Recovery studies were performed by spiking urine and mushroom samples with α-amanitin, and these confirmed the desirable accuracy and practical applicability of our method. The α-amanitin and aptamer recognition sites and binding pockets were investigated in an in vitro molecular docking environment, and the main binding bases of both were T3, G4, C5, T6, T7, C67, and A68. This study truncated the α-amanitin aptamer and proposes a method of detecting α-amanitin.


Assuntos
Agaricales/química , Alfa-Amanitina/análise , Alfa-Amanitina/urina , Aptâmeros de Nucleotídeos/química , Ensaio de Imunoadsorção Enzimática/métodos , Alfa-Amanitina/química , Alfa-Amanitina/metabolismo , Aptâmeros de Nucleotídeos/metabolismo , Colorimetria/métodos , Ouro , Humanos , Fenômenos Magnéticos , Nanopartículas Metálicas , Simulação de Acoplamento Molecular , Intoxicação Alimentar por Cogumelos/diagnóstico , Intoxicação Alimentar por Cogumelos/urina , Sensibilidade e Especificidade
2.
J Biochem Mol Toxicol ; 35(5): e22737, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33751715

RESUMO

Homocysteine (Hcy) is a sulfur-containing amino acid that originated in methionine metabolism and the elevated level of Hcy in plasma is considered to be an independent risk factor for cardiovascular diseases (CVD). Endothelial dysfunction plays a major role in the development of CVD, while the potential mechanism of Hcy-induced endothelial dysfunction is still unclear. Here, in Hcy-treated endothelial cells, we observed the destruction of mitochondrial morphology and the decline of mitochondrial membrane potential. Meanwhile, the level of ATP was reduced and the reactive oxygen species was increased. The expressions of dynamin-related protein 1 (Drp1) and phosphate-Drp1 (Ser616) were upregulated, whereas the expression of mitofusin 2 was inhibited by Hcy treatment. These findings suggested that Hcy not only triggered mitochondrial dysfunction but also incurred an imbalance of mitochondrial dynamics in endothelial cells. The expression of mitochondrial calcium uniporter (MCU) was activated by Hcy, contributing to calcium transferring into mitochondria. Interestingly, the formation of mitochondria-associated membranes (MAMs) was increased in endothelial cells after Hcy administration. The inositol 1,4,5-triphosphate receptor (IP3R)-glucose-regulated protein 75 (Grp75)-voltage-dependent anion channel (VDAC) complex, which was enriched in MAMs, was also increased. The accumulation of mitochondrial calcium could be blocked by inhibiting with the IP3R inhibitor Xestospongin C (XeC) in Hcy-treated cells. Then, we confirmed that the mitochondrial dysfunction and the increased mitochondrial fission induced by Hcy could be attenuated after Hcy and XeC co-treatment. In conclusion, Hcy-induced mitochondrial dysfunction and dynamics disorder in endothelial cells were mainly related to the increase of calcium as a result of the upregulated expressions of the MCU and the IP3R-Grp75-VDAC complex in MAMs.


Assuntos
Cálcio/metabolismo , Homocisteína/farmacologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Homocisteína/efeitos adversos , Células Endoteliais da Veia Umbilical Humana/patologia , Humanos , Mitocôndrias/patologia
3.
Acta Pharmacol Sin ; 42(11): 1790-1797, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33547375

RESUMO

Rictor is a key component of the mammalian target of rapamycin complex 2 (mTORC2) and is required for Akt phosphorylation (Ser473). Our previous study shows that knockdown of Rictor prevents cardiomyocyte differentiation from mouse embryonic stem (ES) cells and induces abnormal electrophysiology of ES cell-derived cardiomyocytes (ESC-CMs). Besides, knockdown of Rictor causes down-expression of connexin 43 (Cx43), the predominant gap junction protein, that is located in both the sarcolemma and mitochondria in cardiomyocytes. Mitochondrial Cx43 (mtCx43) plays a crucial role in mitochondrial function. In this study, we used the model of cardiomyocyte differentiation from mouse ES cells to elucidate the mechanisms for the mitochondrial damage in ESC-CMs after knockdown of Rictor. We showed swollen and ruptured mitochondria were observed after knockdown of Rictor under transmission electron microscope. ATP production and mitochondrial transmembrane potential were significantly decreased in Rictor-knockdown cells. Furthermore, knockdown of Rictor inhibited the activities of mitochondrial respiratory chain complex. The above-mentioned changes were linked to inhibiting the translocation of Cx43 into mitochondria by knockdown of Rictor. We revealed that knockdown of Rictor inactivated the mTOR/Akt signalling pathway and subsequently decreased HDAC6 expression, resulted in Hsp90 hyper-acetylation caused by HDAC6 inhibition, thus, inhibited the formation of Hsp90-Cx43-TOM20 complex. In conclusion, the mitochondrial Cx43 participates in shRNA-Rictor-induced mitochondrial function damage in the ESC-CMs.


Assuntos
Conexina 43/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Mitocôndrias Cardíacas/metabolismo , Células-Tronco Embrionárias Murinas/metabolismo , Miócitos Cardíacos/metabolismo , Proteína Companheira de mTOR Insensível à Rapamicina/metabolismo , Animais , Diferenciação Celular/fisiologia , Conexina 43/genética , Alvo Mecanístico do Complexo 2 de Rapamicina/antagonistas & inibidores , Alvo Mecanístico do Complexo 2 de Rapamicina/genética , Potencial da Membrana Mitocondrial/fisiologia , Camundongos , Proteína Companheira de mTOR Insensível à Rapamicina/antagonistas & inibidores , Proteína Companheira de mTOR Insensível à Rapamicina/genética
4.
J Cell Biochem ; 120(3): 4355-4365, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30246400

RESUMO

MicroRNAs (miRNAs) have been identified as key players in cardiogenesis and heart pathophysiological processes. However, many miRNAs are still not recognized for their roles in cardiomyocytes differentiation. In this study, we evaluated the effects of microRNA-218 (miR-218) in cardiomyocyte differentiation of the mouse embryonic stem cells (ESCs) in vitro. The percentage of the beating embryoid bodies (EBs) in miR-218 mimic-treated cells was reduced to 32% compared with miR-218 mimic negative control (56%) on day 5 + 3. The amplitude of the intracellular Ca2+ transients in the cardiomyocytes derived from ESCs was reduced upon miR-218 overexpression, followed by the decreased calcium-related proteins and cell junction proteins expressions. Besides, miR-218 expression in ESCs was related to the directional spreading ability of EBs during differentiation. The increased expression of miR-218 could promote the migration of ESCs in vitro, while the decreased expression of miR-218 could inhibit the migration by the transwell experiment. Meanwhile, miR-218 could regulate cell migration-related proteins Cdc42 and Rac1. Platelet-derived growth factor receptor α (PDGFRα) was further confirmed to be a direct target of miR-218 both physically and functionally by dual-luciferase reporter assay. Our data further described that overexpression of PDGFRα rescued the miR-218-mediated inhibition of cardiomyocyte differentiation and restored the miR-218-mediated promotion of cell migration. In conclusion, miR-218 was demonstrated to exert an inhibitory function and promoted cell migration via targeting PDGFRα during cardiomyocyte differentiation from ESCs. The current study revealed the role of miR-218 and may provide an important hint for cardiomyocyte differentiation of ESCs and induced pluripotent stem cells.


Assuntos
Diferenciação Celular , Movimento Celular , MicroRNAs/biossíntese , Células-Tronco Embrionárias Murinas/metabolismo , Miócitos Cardíacos/metabolismo , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/biossíntese , Animais , Sinalização do Cálcio/genética , Linhagem Celular , Camundongos , MicroRNAs/genética , Células-Tronco Embrionárias Murinas/citologia , Miócitos Cardíacos/citologia , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/genética
5.
Stem Cells Dev ; 33(3-4): 67-78, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38032751

RESUMO

The histamine H3 receptor, prominently expressed in neurons with a minor presence in glial cells, acts as both an autoreceptor and an alloreceptor, controlling the release of histamine and other neurotransmitters. The receptor impacts various essential physiological processes. Our team's initial investigations had demonstrated that the histamine H3 receptor antagonists could facilitate nerve regeneration by promoting the histamine H1 receptors on primary neural stem cells (NSCs) in the traumatic brain injury mouse, which suggested the potential of histamine H3 receptor as a promising target for treating neurological disorders and promoting nerve regeneration. Pitolisant (PITO) is the only histamine H3 receptor antagonist approved by the Food and Drug Administration (FDA) for treating narcolepsy. However, there is no report on Pitolisant in neural development or regeneration, and it is urgent to be further studied in strong biological activity models in vitro. The embryonic stem (ES) cells were differentiated into neural cells in vitro, which replicated the neurodevelopmental processes that occur in vivo. It also provided an alternative model for studying neurodevelopmental processes and testing drugs for neurological conditions. Therefore, we aimed to elucidate the regulatory role of Pitolisant in the early differentiation of ES cells into neural cells. Our results demonstrated that Pitolisant could promote the differentiation of ES cells toward NSCs and stimulated the formation of growth cones. Furthermore, Pitolisant was capable of inducing the polarization of NSCs through the cAMP-LKB1-SAD/MARK2 pathway, but had no significant effect on later neuronal maturation. Pitolisant altered mitochondrial morphology and upregulated the levels of mitochondrion-related proteins TOM20, Drp1, and p-Drp1, and reversed the inhibitory effect of Mdivi-1 on mitochondrial fission during the early neural differentiation of ES cells. In addition, Pitolisant induced the increase in cytosolic Ca2+. Our study provided an experimental foundation for the potential application of histamine H3 receptor-targeted modulators in the field of neuroregeneration.


Assuntos
Histamina , Piperidinas , Receptores Histamínicos H3 , Camundongos , Animais , Histamina/farmacologia , Células-Tronco Embrionárias Murinas/metabolismo , Agonistas dos Receptores Histamínicos/farmacologia , Agonistas dos Receptores Histamínicos/uso terapêutico , Receptores Histamínicos H3/metabolismo
6.
Biomater Sci ; 11(8): 2711-2725, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-36802175

RESUMO

Bacterial infection, tissue hypoxia, and inflammatory and oxidative stress are several key problems in wound healing of chronic infections. Herein, a multi-enzyme-like activity exhibiting multifunctional hydrogel made up of mussel-inspired carbon dot reduced-Ag (CDs/AgNPs) and Cu/Fe-nitrogen-doped carbon (Cu,Fe-NC) was designed. Due to the loss of glutathione (GSH) and oxidase (OXD)-like activity of the nanozyme (decomposes O2 to generate a superoxide anion radical (O2˙-) and hydroxyl radical production (˙OH)), the multifunctional hydrogel exhibited excellent antibacterial performance. More importantly, during the bacterial elimination within the inflammatory phase of wound healing, the hydrogel could act as a catalase (CAT)-like agent to supply adequate O2 by catalyzing intracellular H2O2 for hypoxia abatement. The catechol groups on the CDs/AgNPs endowed them with the dynamic redox equilibrium properties of phenol-quinones, thus providing the hydrogel with mussel-like adhesion properties. The multifunctional hydrogel was shown to excellently promote bacterial infection wound healing and maximize the efficiency of nanozymes.


Assuntos
Hidrogéis , Peróxido de Hidrogênio , Humanos , Bactérias , Carbono , Glutationa , Hipóxia
7.
Anal Methods ; 14(40): 3953-3960, 2022 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-36196953

RESUMO

Mycotoxin, common in agricultural products, is a small secondary metabolite with strong toxicity. Fumonisin B1 (FB1) is the most common and the most toxic. Establishing a rapid detection method is important for preventing and controlling FB1 pollution. This study prepared carbon dots (CDs) from 2,2'-dithiosalicylic acid (DTSA). Tetramethylbenzidine (TMB) can be catalyzed to produce fluorescence by CDs, while FB1 can adhere to the surface of CDs, decreasing fluorescence. Aptamer F10 of FB1 combines with FB1 attached to the surface of CDs to restore the catalytic ability of CDs and increase the fluorescence value. This method has good linearity in the FB1 concentration range from 0 to 1.0 µg mL-1. The standard curve was Y = -0.2512x + 661.4, R2 = 0.9903, the limit of detection (LOD) was 17.67 ng mL-1 and limit of quantitation (LOQ) was 53.55 ng mL-1. The recovery of the corn sample was 89.83-98.62%, and the detection time was 30 min.


Assuntos
Fumonisinas , Micotoxinas , Carbono , Oligonucleotídeos , Catálise
8.
J Diabetes Complications ; 35(3): 107830, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33446411

RESUMO

AIMS: To assess the effectiveness of renin-angiotensin-aldosterone system (RAAS) inhibitors, angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin II receptor blockers (ARBs) separately to prevent all-cause mortality, myocardial infarction (MI), stroke and heart failure (HF) in patients with diabetes considering the number needed to treat (NNT) and minimal clinical effect (MCE). METHODS: Data from 17 morbidity-mortality trials in patients with diabetes were used to calculate NNTs and evaluate MCE to prevent all-cause mortality, myocardial infarction, stroke, and heart failure. RESULTS: A total of 17 trials involving 42,037 patients were included in this meta-analysis. Mean follow-up was 3.7 years. ACEIs significantly reduced the risk of all-cause mortality, MI and HF; the corresponding mean NNTBs were 48, 62 and 78, respectively, but ARBs were only associated with a reduction in heart failure. The clinical significance assessment of the included trials indicated that most of the statistically significant trial results had no definitive clinical significance, and only some of them had possible clinical significance. CONCLUSIONS: Among patients with diabetes, ACEIs reduced all-cause mortality, MI and HF, whereas ARBs could only prevent HF. However, none of the results of these trials had clear clinical significance, and most had only possible clinical significance.


Assuntos
Antagonistas de Receptores de Angiotensina , Inibidores da Enzima Conversora de Angiotensina , Diabetes Mellitus , Insuficiência Cardíaca , Infarto do Miocárdio , Acidente Vascular Cerebral , Antagonistas de Receptores de Angiotensina/uso terapêutico , Inibidores da Enzima Conversora de Angiotensina/uso terapêutico , Diabetes Mellitus/epidemiologia , Insuficiência Cardíaca/epidemiologia , Insuficiência Cardíaca/prevenção & controle , Humanos , Mortalidade , Infarto do Miocárdio/epidemiologia , Infarto do Miocárdio/prevenção & controle , Sistema Renina-Angiotensina/efeitos dos fármacos , Acidente Vascular Cerebral/epidemiologia , Acidente Vascular Cerebral/prevenção & controle
9.
Toxicol In Vitro ; 69: 104988, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32861759

RESUMO

Perfluorooctane sulfonate (PFOS), a classic environmental pollutant, is reported to cause cardiotoxicity in animals and humans. It has been demonstrated that PFOS exposure down-regulates expression of cardiac-development related genes and proteins. However, the related mechanism of PFOS has not been fully elucidated. In the present study, the embryonic stem (ES) cells-derived cardiomyocytes (ESC-CMs) was employed to investigate PFOS-mediated mechanism in developmental toxicity of cardiomyocytes. Our previous study shows that PFOS induces cardiomyocyte toxicity via causing mitochondrial damage. Nevertheless, the underlying mechanism by which PFOS affects the autophagy-related mitochondrial toxicity in ESC-CMs remains unclear. Here, we found that PFOS induced the swelling of mitochondria and the autophagosome accumulation in ESC-CMs at 40 µM concentration. PFOS increased the levels of LC3-II, p62, and ubiquitinated proteins. PFOS also induced an increase of LC3 and p62 localization into mitochondria, indicating that mitophagy degradation was impaired. The results of autophagic flux using chloroquine and RFP-GFP-LC3 analysis showed that the accumulation of autophagosome was not caused by the formation but by the impaired degradation. PFOS was capable of blocking the fusion between autophagosome and lysosome. PFOS caused dysfunction of lysosomes because it down-regulated Lamp2a and cathepsin D, but it did not induced lysosome membrane permeabilization. Meanwhile, PFOS-mediated lysosomal function and the inhibitory effect of autophagic flux could be reversed by PP242 at 40 nM concentration, an mTOR inhibitor. Furthermore, PP242 restored PFOS-induced ATP depletion and mitochondrial membrane potential. In conclusion, PFOS induced mitochondrial dysfunction via blocking autophagy-lysosome degradation, leading to cardiomyocyte toxicity from ES cells.


Assuntos
Ácidos Alcanossulfônicos/toxicidade , Autofagia/efeitos dos fármacos , Fluorocarbonos/toxicidade , Lisossomos/efeitos dos fármacos , Células-Tronco Embrionárias Murinas/citologia , Miócitos Cardíacos/efeitos dos fármacos , Trifosfato de Adenosina/metabolismo , Animais , Autofagossomos/efeitos dos fármacos , Diferenciação Celular , Células Cultivadas , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/fisiologia , Miócitos Cardíacos/fisiologia , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA