Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
1.
Annu Rev Biochem ; 82: 497-530, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23746261

RESUMO

Isoprenoids are a class of natural products with more than 55,000 members. All isoprenoids are constructed from two precursors, isopentenyl diphosphate and its isomer dimethylallyl diphosphate. Two of the most important discoveries in isoprenoid biosynthetic studies in recent years are the elucidation of a second isoprenoid biosynthetic pathway [the methylerythritol phosphate (MEP) pathway] and a modified mevalonic acid (MVA) pathway. In this review, we summarize mechanistic insights on the MEP pathway enzymes. Because many isoprenoids have important biological activities, the need to produce them in sufficient quantities for downstream research efforts or commercial application is apparent. Recent advances in both MVA and MEP pathway-based synthetic biology are also illustrated by reviewing the landmark work of artemisinic acid and taxadien-5α-ol production through microbial fermentations.


Assuntos
Vias Biossintéticas/fisiologia , Eritritol/metabolismo , Hemiterpenos/biossíntese , Terpenos/metabolismo , Catálise , Humanos , Compostos Organofosforados
2.
Immunity ; 45(5): 1093-1107, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27793594

RESUMO

Type I interferon (IFN) is critical for controlling pathogen infection; however, its regulatory mechanisms in plasmacytoid cells (pDCs) still remain unclear. Here, we have shown that nucleic acid sensors cGAS-, STING-, MDA5-, MAVS-, or transcription factor IRF3-deficient mice produced high amounts of type I IFN-α and IFN-ß (IFN-α/ß) in the serum and were resistant to lethal plasmodium yoelii YM infection. Robust IFN-α/ß production was abolished when gene encoding nucleic acid sensor TLR7, signaling adaptor MyD88, or transcription factor IRF7 was ablated or pDCs were depleted. Further, we identified SOCS1 as a key negative regulator to inhibit MyD88-dependent type I IFN signaling in pDCs. Finally, we have demonstrated that pDCs, cDCs, and macrophages were required for generating IFN-α/ß-induced subsequent protective immunity. Thus, our findings have identified a critical regulatory mechanism of type I IFN signaling in pDCs and stage-specific function of immune cells in generating potent immunity against lethal YM infection.


Assuntos
Imunidade Adaptativa/imunologia , Células Dendríticas/imunologia , Interferon Tipo I/imunologia , Malária/imunologia , Transdução de Sinais/imunologia , Animais , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Técnicas de Silenciamento de Genes , Camundongos , Camundongos Knockout , Plasmodium yoelii , Reação em Cadeia da Polimerase
3.
Chembiochem ; : e202400307, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38900645

RESUMO

Non-heme mononuclear iron dependent (NHM-Fe) enzymes exhibit exceedingly diverse catalytic reactivities. Despite their catalytic versatilities, the mononuclear iron centers in these enzymes show a relatively simple architecture, in which an iron atom is ligated with 2-4 amino acid residues, including histidine, aspartic or glutamic acid. In the past two decades, a common high-valent reactive iron intermediate, the S = 2 oxoferryl (Fe(IV)-oxo or Fe(IV)=O) species, has been repeatedly discovered in NHM-Fe enzymes containing a 2-His-Fe or 2-His-1-carboxylate-Fe center. However, for 3-His/4-His-Fe enzymes, no common reactive intermediate has been identified. Recently, we have spectroscopically characterized the first S = 1 Fe(IV) intermediate in a 3-His-Fe containing enzyme, OvoA, which catalyzes a novel oxidative carbon-sulfur bond formation. In this review, we summarize the broad reactivities demonstrated by S = 2 Fe(IV)-oxo intermediates, the discovery of the first S = 1 Fe(IV) intermediate in OvoA and the mechanistic implication of such a discovery, and the intrinsic reactivity differences of the S = 2 and the S = 1 Fe(IV)-oxo species. Finally, we postulate the possible reasons to utilize an S = 1 Fe(IV) species in OvoA and their implications to other 3-His/4-His-Fe enzymes.

4.
J Med Virol ; 95(1): e28115, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36059257

RESUMO

In 2019, a serious dengue virus (DENV) infection broke out in the Xishuangbanna Dai Autonomous Prefecture, China. Therefore, we conducted a molecular epidemiological analysis in people that contracted DENV serotype 1 (DENV-1) during this year. We analyzed the molecular epidemiology of six DENV-1 epidemic strains in 2019 by full-length genome sequencing, amino acid mutation site analysis, evolutionary tree analysis, and recombination site comparison analysis. Through the analysis of amino acid mutation sites, it was found that DENV-1 strain (MW386867) was different from the other five epidemic DENV-1 strains in Xishuangbanna in 2019. MW386867 had unique mutation sites at six loci. The six epidemic DENV-1 strains in Xishuangbanna in 2019 were divided into two clusters. MW386867 was highly similar to the MG679800 (Myanmar 2017), MG679801 (Myanmar 2017), and KC172834 (Laos 2008), and the other five strains were highly similar to JQ045660 (Vietnam 2011), FJ176780 (GuangDong 2006). Genetic recombination analysis revealed that there was no recombination signal in the six epidemic DENV-1 strains in Xishuangbanna in 2019. We speculate that the DENV-1 epidemic in 2019 has a co-epidemic of local strains and cross-border strains.


Assuntos
Vírus da Dengue , Dengue , Humanos , Vírus da Dengue/genética , Dengue/epidemiologia , Filogenia , Genótipo , Surtos de Doenças , Sorogrupo , China/epidemiologia
5.
Angew Chem Int Ed Engl ; 62(37): e202218643, 2023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-37541669

RESUMO

In their recent Angewandte Chemie publication (doi: 10.1002/anie.202112063), Cen, Wang, Zhou et al. reported the crystal structure of a ternary complex of the non-heme iron endoperoxidase FtmOx1 (PDB entry 7ETK). The biochemical data assessed in this study were from a retracted study (doi: 10.1038/nature15519) by Zhang, Liu, Zhang et al.; no additional biochemical data were included, yet there was no discussion on the source of the biochemical data in the report by Cen, Wang, Zhou et al. Based on this new crystal structure and subsequent QM/MM-MD calculations, Cen, Wang, Zhou et al. concluded that their work provided evidence supporting the CarC-like mechanistic model for FtmOx1 catalysis. However, the authors did not accurately describe either the CarC-like model or the COX-like model, and they did not address the differences between them. Further, and contrary to their interpretations in the manuscript, the authors' data are consistent with the COX-like model once the details of the CarC-like and COX-like models have been carefully analyzed.


Assuntos
Biocatálise , Modelos Moleculares , Estrutura Terciária de Proteína
6.
Angew Chem Int Ed Engl ; 62(43): e202309362, 2023 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-37640689

RESUMO

Ergothioneine (ESH) and ovothiol A (OSHA) are two natural thiol-histidine derivatives. ESH has been implicated as a longevity vitamin and OSHA inhibits the proliferation of hepatocarcinoma. The key biosynthetic step of ESH and OSHA in the aerobic pathways is the O2 -dependent C-S bond formation catalyzed by non-heme iron enzymes (e.g., OvoA in ovothiol biosynthesis), but due to the lack of identification of key reactive intermediate the mechanism of this novel reaction is unresolved. In this study, we report the identification and characterization of a kinetically competent S=1 iron(IV) intermediate supported by a four-histidine ligand environment (three from the protein residues and one from the substrate) in enabling C-S bond formation in OvoA from Methyloversatilis thermotoleran, which represents the first experimentally observed intermediate spin iron(IV) species in non-heme iron enzymes. Results reported in this study thus set the stage to further dissect the mechanism of enzymatic oxidative C-S bond formation in the OSHA biosynthesis pathway. They also afford new opportunities to study the structure-function relationship of high-valent iron intermediates supported by a histidine rich ligand environment.


Assuntos
Histidina , Ferro , Histidina/metabolismo , Ligantes , Catálise , Estresse Oxidativo
8.
Arch Virol ; 166(3): 863-870, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33495898

RESUMO

A dengue virus serotype 1 (DENV-1) epidemic occurred from October to December 2018 in Xishuangbanna, Yunnan, Southwest China, neighboring Myanmar, Laos, and Vietnam. In this study, we investigated the molecular characteristics, evolution, and potential source of DENV from Xishuangbanna. The C (capsid), prM (premembrane), and E (envelope) genes of DENV isolated from 87 serum samples obtained from local patients were amplified and sequenced, and the sequences were evaluated by identification of mutations, phylogenetic and homologous recombination analysis, and secondary structure prediction. Phylogenetic analysis showed that all of the epidemic DENV strains from Xishuangbanna could be grouped in a branch with DENV-1 isolates, and were most similar to the Fujian 2005 (China, DQ193572) and Singapore 2016 (MF314188) strains. When compared with DENV-1SS (the standard strain), there were 31 non-synonymous mutations, but no obvious homologous recombination signal was found. Secondary structure prediction showed that some changes had occurred in a helical region in proteins of the MN123849 and MN123854 strains, but there were few changes in the disordered region. This study reveals the molecular characteristics of the structural genes of the Xishuangbanna epidemic strains in 2018 and provides a reference for molecular epidemiology, infection, and pathogenicity research and vaccine development.


Assuntos
Proteínas do Capsídeo/genética , Vírus da Dengue/genética , Dengue/epidemiologia , Proteínas do Envelope Viral/genética , Sequência de Aminoácidos , China/epidemiologia , Vírus da Dengue/classificação , Vírus da Dengue/isolamento & purificação , Surtos de Doenças , Genótipo , Humanos , Epidemiologia Molecular , Filogenia , RNA Viral/genética , Alinhamento de Sequência , Análise de Sequência de RNA , Sorogrupo
9.
Nature ; 527(7579): 539-543, 2015 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-26524521

RESUMO

Many peroxy-containing secondary metabolites have been isolated and shown to provide beneficial effects to human health. Yet, the mechanisms of most endoperoxide biosyntheses are not well understood. Although endoperoxides have been suggested as key reaction intermediates in several cases, the only well-characterized endoperoxide biosynthetic enzyme is prostaglandin H synthase, a haem-containing enzyme. Fumitremorgin B endoperoxidase (FtmOx1) from Aspergillus fumigatus is the first reported α-ketoglutarate-dependent mononuclear non-haem iron enzyme that can catalyse an endoperoxide formation reaction. To elucidate the mechanistic details for this unique chemical transformation, we report the X-ray crystal structures of FtmOx1 and the binary complexes it forms with either the co-substrate (α-ketoglutarate) or the substrate (fumitremorgin B). Uniquely, after α-ketoglutarate has bound to the mononuclear iron centre in a bidentate fashion, the remaining open site for oxygen binding and activation is shielded from the substrate or the solvent by a tyrosine residue (Y224). Upon replacing Y224 with alanine or phenylalanine, the FtmOx1 catalysis diverts from endoperoxide formation to the more commonly observed hydroxylation. Subsequent characterizations by a combination of stopped-flow optical absorption spectroscopy and freeze-quench electron paramagnetic resonance spectroscopy support the presence of transient radical species in FtmOx1 catalysis. Our results help to unravel the novel mechanism for this endoperoxide formation reaction.


Assuntos
Aspergillus fumigatus/enzimologia , Biocatálise , Ácidos Cetoglutáricos/metabolismo , Endoperóxidos de Prostaglandina/biossíntese , Sítios de Ligação , Cristalografia por Raios X , Espectroscopia de Ressonância de Spin Eletrônica , Heme , Hidroxilação , Indóis/metabolismo , Ferro/metabolismo , Oxigênio/metabolismo , Tirosina/metabolismo
10.
Nature ; 496(7443): 114-8, 2013 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-23552950

RESUMO

(S)-2-hydroxypropylphosphonate ((S)-2-HPP) epoxidase (HppE) is a mononuclear non-haem-iron-dependent enzyme responsible for the final step in the biosynthesis of the clinically useful antibiotic fosfomycin. Enzymes of this class typically catalyse oxygenation reactions that proceed via the formation of substrate radical intermediates. By contrast, HppE catalyses an unusual dehydrogenation reaction while converting the secondary alcohol of (S)-2-HPP to the epoxide ring of fosfomycin. Here we show that HppE also catalyses a biologically unprecedented 1,2-phosphono migration with the alternative substrate (R)-1-HPP. This transformation probably involves an intermediary carbocation, based on observations with additional substrate analogues, such as (1R)-1-hydroxyl-2-aminopropylphosphonate, and model reactions for both radical- and carbocation-mediated migration. The ability of HppE to catalyse distinct reactions depending on the regio- and stereochemical properties of the substrate is given a structural basis using X-ray crystallography. These results provide compelling evidence for the formation of a substrate-derived cation intermediate in the catalytic cycle of a mononuclear non-haem-iron-dependent enzyme. The underlying chemistry of this unusual phosphono migration may represent a new paradigm for the in vivo construction of phosphonate-containing natural products that can be exploited for the preparation of new phosphonate derivatives.


Assuntos
Biocatálise , Fosfomicina/biossíntese , Organofosfonatos/metabolismo , Oxirredutases/metabolismo , Produtos Biológicos/química , Produtos Biológicos/metabolismo , Cristalografia por Raios X , Fosfomicina/química , Fosfomicina/metabolismo , Hidrogenação , Ferro , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Ferroproteínas não Heme/química , Ferroproteínas não Heme/metabolismo , Organofosfonatos/química , Oxirredutases/química , Especificidade por Substrato , Fatores de Tempo
11.
Biochemistry ; 57(24): 3309-3325, 2018 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-29589901

RESUMO

As one of the most abundant elements on earth, sulfur is part of many small molecular metabolites and is key to their biological activities. Over the past few decades, some general strategies have been discovered for the incorporation of sulfur into natural products. In this review, we summarize recent efforts in elucidating the biosynthetic details for two sulfur-containing metabolites, ergothioneine and ovothiol. Their biosyntheses involve an unprecedented trans-sulfur strategy, a combination of a mononuclear non-heme iron enzyme-catalyzed oxidative C-S bond formation reaction and a PLP enzyme-mediated C-S lyase reaction.


Assuntos
Produtos Biológicos/metabolismo , Ergotioneína/biossíntese , Metilistidinas/metabolismo , Enxofre/metabolismo , Produtos Biológicos/química , Ergotioneína/química , Metilistidinas/química , Conformação Molecular , Enxofre/química
12.
J Am Chem Soc ; 140(13): 4604-4612, 2018 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-29544051

RESUMO

Ovothiol is a histidine thiol derivative. The biosynthesis of ovothiol involves an extremely efficient trans-sulfuration strategy. The nonheme iron enzyme OvoA catalyzed oxidative coupling between cysteine and histidine is one of the key steps. Besides catalyzing the oxidative coupling between cysteine and histidine, OvoA also catalyzes the oxidation of cysteine to cysteine sulfinic acid (cysteine dioxygenase activity). Thus far, very little mechanistic information is available for OvoA-catalysis. In this report, we measured the kinetic isotope effect (KIE) in OvoA-catalysis using the isotopically sensitive branching method. In addition, by replacing an active site tyrosine (Tyr417) with 2-amino-3-(4-hydroxy-3-(methylthio)phenyl)propanoic acid (MtTyr) through the amber suppressor mediated unnatural amino acid incorporation method, the two OvoA activities (oxidative coupling between cysteine and histidine, and cysteine dioxygenase activity) can be modulated. These results suggest that the two OvoA activities branch out from a common intermediate and that the active site tyrosine residue plays some key roles in controlling the partitioning between these two pathways.


Assuntos
Cisteína/química , Metilistidinas/química , Ferroproteínas não Heme/química , Compostos de Sulfidrila/química , Tirosina/química , Catálise , Domínio Catalítico , Estrutura Molecular , Oxirredução
13.
Nat Prod Rep ; 35(8): 792-837, 2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-29932179

RESUMO

Covering: up to 2018 α-Ketoglutarate (αKG, also known as 2-oxoglutarate)-dependent mononuclear non-haem iron (αKG-NHFe) enzymes catalyze a wide range of biochemical reactions, including hydroxylation, ring fragmentation, C-C bond cleavage, epimerization, desaturation, endoperoxidation and heterocycle formation. These enzymes utilize iron(ii) as the metallo-cofactor and αKG as the co-substrate. Herein, we summarize several novel αKG-NHFe enzymes involved in natural product biosyntheses discovered in recent years, including halogenation reactions, amino acid modifications and tailoring reactions in the biosynthesis of terpenes, lipids, fatty acids and phosphonates. We also conducted a survey of the currently available structures of αKG-NHFe enzymes, in which αKG binds to the metallo-centre bidentately through either a proximal- or distal-type binding mode. Future structure-function and structure-reactivity relationship investigations will provide crucial information regarding how activities in this large class of enzymes have been fine-tuned in nature.


Assuntos
Produtos Biológicos/metabolismo , Enzimas/química , Enzimas/metabolismo , Ferro/química , Ácidos Cetoglutáricos/metabolismo , Aminoácidos/química , Aminoácidos/metabolismo , Carnitina/biossíntese , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Ciclopropanos/química , Ciclopropanos/metabolismo , Etilenos/biossíntese , Halogenação , Heme
14.
Metab Eng ; 38: 494-503, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27989805

RESUMO

Isoprenoids are used in many commercial applications and much work has gone into engineering microbial hosts for their production. Isoprenoids are produced either from acetyl-CoA via the mevalonate pathway or from pyruvate and glyceraldehyde 3-phosphate via the 1-deoxy-D-xylulose 5-phosphate (DXP) pathway. Saccharomyces cerevisiae exclusively utilizes the mevalonate pathway to synthesize native isoprenoids and in fact the alternative DXP pathway has never been found or successfully reconstructed in the eukaryotic cytosol. There are, however, several advantages to isoprenoid synthesis via the DXP pathway, such as a higher theoretical yield, and it has long been a goal to transplant the pathway into yeast. In this work, we investigate and address barriers to DXP pathway functionality in S. cerevisiae using a combination of synthetic biology, biochemistry and metabolomics. We report, for the first time, functional expression of the DXP pathway in S. cerevisiae. Under low aeration conditions, an engineered strain relying solely on the DXP pathway for isoprenoid biosynthesis achieved an endpoint biomass 80% of that of the same strain using the mevalonate pathway.


Assuntos
Engenharia Metabólica , Pentosefosfatos , Saccharomyces cerevisiae , Terpenos/metabolismo , Pentosefosfatos/genética , Pentosefosfatos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
15.
Clin Cosmet Investig Dermatol ; 17: 1309-1319, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38854850

RESUMO

Background: Ergothioneine (EGT) is an antioxidant, which could be detected in human tissues, and human skin cells could utilize EGT and play an anti-oxidative role in keratinocytes. And in this study we are going to elucidate whether EGT could protect the skin from photoaging by Ultraviolet (UV) exposure in mice and its molecule pathway. Methods: Histological analysis was performed for evaluating the skin structure change. Malondialdehyde (MDA) and superoxide dismutase (SOD) levels were measured with biological assay for evaluating oxidative and antioxidative ability of skin exposed to UV light. And the level of marker molecules in mouse skin were detected by hydroxyproline (Hyp) assay, immunohistochemical analysis, Western blot, and quantitative real-time PCR (qRT-PCR). The markers of skin aging and cell death were tested by cell culture and treatment, Western blot and qRT-PCR. Results: EGT decreased the levels of inflammatory factors induced by UV exposure in mouse skin. MDA and SOD activity detection showed that EGT decreased MDA levels, increased SOD activity, and upregulated PI3K/Akt/Nrf2 signals in mouse skin exposed to UV, which further activated Nrf2 in the nucleus and enhanced the expression of Nrf2 target genes. In the cell model, we revealed that EGT could inhibit the increase in senescence-associated ß-galactosidase-positive cells and p16 and γ-H2A.X positive cells induced by etoposide and activate PI3K/Akt/Nrf2 signaling. Moreover, a PI3K inhibitor blocked EGT protection against etoposide-induced cell death. Conclusion: The study showed EGT may play an important protective role against cell damage or death through the PI3K/Akt/Nrf2 signaling pathway in skin.

16.
Aging Dis ; 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38916729

RESUMO

Alzheimer's disease (AD) is an age-dependent neurodegenerative disease characterized by extracellular Amyloid Aß peptide (Aß) deposition and intracellular Tau protein aggregation. Glia, especially microglia and astrocytes are core participants during the progression of AD and these cells are the mediators of Aß clearance and degradation. The microbiota-gut-brain axis (MGBA) is a complex interactive network between the gut and brain involved in neurodegeneration. MGBA affects the function of glia in the central nervous system (CNS), and microbial metabolites regulate the communication between astrocytes and microglia; however, whether such communication is part of AD pathophysiology remains unknown. One of the potential links in bilateral gut-brain communication is tryptophan (Trp) metabolism. The microbiota-originated Trp and its metabolites enter the CNS to control microglial activation, and the activated microglia subsequently affect astrocyte functions. The present review highlights the role of MGBA in AD pathology, especially the roles of Trp per se and its metabolism as a part of the gut microbiota and brain communications. We (i) discuss the roles of Trp derivatives in microglia-astrocyte crosstalk from a bioinformatics perspective, (ii) describe the role of glia polarization in the microglia-astrocyte crosstalk and AD pathology, and (iii) summarize the potential of Trp metabolism as a therapeutic target. Finally, we review the role of Trp in AD from the perspective of the gut-brain axis and microglia, as well as astrocyte crosstalk, to inspire the discovery of novel AD therapeutics.

17.
J Biol Chem ; 287(10): 7063-73, 2012 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-22241479

RESUMO

Coronavirus (CoV) nucleocapsid (N) protein contains two structurally independent RNA binding domains. These are denoted N-terminal domain (NTD) and C-terminal domain and are joined by a charged linker region rich in serine and arginine residues (SR linker). In mouse hepatitis virus (MHV), the NTD binds the transcriptional regulatory sequence (TRS) RNA, a conserved hexanucleotide sequence required for subgenomic RNA synthesis. The NTD is also capable of disrupting a short RNA duplex. We show here that three residues on the ß3 (Arg-125 and Tyr-127) and ß5 (Tyr-190) strands play key roles in TRS RNA binding and helix destabilization with Ala substitutions of these residues lethal to the virus. NMR studies of the MHV NTD·TRS complex revealed that this region defines a major RNA binding interface in MHV with site-directed spin labeling studies consistent with a model in which the adenosine-rich 3'-region of TRS is anchored by Arg-125, Tyr-127, and Tyr-190 in a way that is critical for efficient subgenomic RNA synthesis in MHV. Characterization of CoV N NTDs from infectious bronchitis virus and from severe acute respiratory syndrome CoV revealed that, although detailed NTD-TRS determinants are distinct from those of MHV NTD, rapid helix destabilization activity of CoV N NTDs is most strongly correlated with CoV function and virus viability.


Assuntos
Modelos Moleculares , Vírus da Hepatite Murina/química , Proteínas do Nucleocapsídeo/química , RNA Viral/química , Proteínas de Ligação a RNA/química , Substituição de Aminoácidos , Animais , Linhagem Celular , Camundongos , Vírus da Hepatite Murina/genética , Vírus da Hepatite Murina/metabolismo , Mutação de Sentido Incorreto , Proteínas do Nucleocapsídeo/genética , Proteínas do Nucleocapsídeo/metabolismo , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , RNA Viral/genética , RNA Viral/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
18.
J Virol ; 86(8): 4294-304, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22301153

RESUMO

Coronaviruses encode an endoribonuclease, Nsp15, which has a poorly defined role in infection. Sequence analysis revealed a retinoblastoma protein-binding motif (LXCXE/D) in the majority of the Nsp15 of the severe acute respiratory syndrome coronavirus (SARS-CoV) and its orthologs in the alpha and beta coronaviruses. The endoribonuclease activity of the SARS-CoV Nsp15 (sNsp15) was stimulated by retinoblastoma protein (pRb) in vitro, and the two proteins can be coimmunoprecipitated from cellular extracts. Mutations in the pRb-binding motif rendered sNsp15 to be differentially modified by ubiquitin in cells, and cytotoxicity was observed upon its expression. Expression of the sNsp15 in cells resulted in an increased abundance of pRb in the cytoplasm, decreased overall levels of pRb, an increased proportion of cells in the S phase of the cell cycle, and an enhanced expression from a promoter normally repressed by pRb. The endoribonuclease activity of the mouse hepatitis virus (MHV) A59 Nsp15 was also increased by pRb in vitro, and an MHV with mutations in the LXCXE/D-motif, named vLC, exhibited a smaller plaque diameter and reduced the virus titer by ∼1 log. Overexpression of pRb delayed the viral protein production by wild-type MHV but not by vLC. This study reveals that pRb and its interaction with Nsp15 can affect coronavirus infection and adds coronaviruses to a small but growing family of RNA viruses that encode a protein to interact with pRb.


Assuntos
Endorribonucleases/metabolismo , Vírus da Hepatite Murina/enzimologia , Proteína do Retinoblastoma/metabolismo , Proteínas não Estruturais Virais/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Apoptose/genética , Sítios de Ligação , Linhagem Celular , Infecções por Coronavirus/metabolismo , Cricetinae , Endorribonucleases/genética , Regulação da Expressão Gênica , Humanos , Camundongos , Modelos Moleculares , Vírus da Hepatite Murina/genética , Mutação , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Transporte Proteico , Proteína do Retinoblastoma/genética , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/genética
19.
ACS Catal ; 13(23): 15417-15426, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38058600

RESUMO

Ovothiol A and ergothioneine are thiol-histidine derivatives with sulfur substitutions at the δ-carbon or ε-carbon of the l-histidine imidazole ring, respectively. Both ovothiol A and ergothioneine have protective effects on many aging-related diseases, and the sulfur substitution plays a key role in determining their chemical and biological properties, while factors governing sulfur incorporation regioselectivities in ovothiol and ergothioneine biosynthesis in the corresponding enzymes (OvoA, Egt1, or EgtB) are not yet known. In this study, we have successfully obtained the first OvoA crystal structure, which provides critical information to explain their C-S bond formation regioselectivity. Furthermore, OvoATh2 exhibits several additional activities: (1) ergothioneine sulfoxide synthase activity akin to Egt1 in ergothioneine biosynthesis; (2) cysteine dioxygenase activity using l-cysteine and l-histidine analogues as substrates; (3) cysteine dioxygenase activity upon mutation of an active site tyrosine residue (Y406). The structural insights and diverse chemistries demonstrated by OvoATh2 pave the way for future comprehensive structure-function correlation studies.

20.
J Am Chem Soc ; 134(5): 2823-34, 2012 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-22224443

RESUMO

Herein, the structure resulting from in situ turnover in a chemically challenging quaternary ammonium oxidative demethylation reaction was captured via crystallographic analysis and analyzed via single-crystal spectroscopy. Crystal structures were determined for the Rieske-type monooxygenase, stachydrine demethylase, in the unliganded state (at 1.6 Å resolution) and in the product complex (at 2.2 Å resolution). The ligand complex was obtained from enzyme aerobically cocrystallized with the substrate stachydrine (N,N-dimethylproline). The ligand electron density in the complex was interpreted as proline, generated within the active site at 100 K by the absorption of X-ray photon energy and two consecutive demethylation cycles. The oxidation state of the Rieske iron-sulfur cluster was characterized by UV-visible spectroscopy throughout X-ray data collection in conjunction with resonance Raman spectra collected before and after diffraction data. Shifts in the absorption band wavelength and intensity as a function of absorbed X-ray dose demonstrated that the Rieske center was reduced by solvated electrons generated by X-ray photons; the kinetics of the reduction process differed dramatically for the liganded complex compared to unliganded demethylase, which may correspond to the observed turnover in the crystal.


Assuntos
Oxigenases de Função Mista/análise , Compostos de Amônio Quaternário/química , Cristalografia por Raios X , Oxigenases de Função Mista/metabolismo , Modelos Moleculares , Oxirredução , Prolina/análogos & derivados , Prolina/química , Prolina/metabolismo , Compostos de Amônio Quaternário/metabolismo , Espectrofotometria Ultravioleta , Análise Espectral Raman
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA