Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Environ Microbiol ; 25(12): 2958-2971, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37599091

RESUMO

Cycloalkanes are abundant and toxic compounds in subsurface petroleum reservoirs and their fate is important to ecosystems impacted by natural oil seeps and spills. This study focuses on the microbial metabolism of methylcyclohexane (MCH) and methylcyclopentane (MCP) in the deep Gulf of Mexico. MCH and MCP are often abundant cycloalkanes observed in petroleum and will dissolve into the water column when introduced at the seafloor via a spill or natural seep. We conducted incubations with deep Gulf of Mexico (GOM) seawater amended with MCH and MCP at four stations. Within incubations with active respiration of MCH and MCP, we found that a novel genus of bacteria belonging to the Porticoccaceae family (Candidatus Reddybacter) dominated the microbial community. Using metagenome-assembled genomes, we reconstructed the central metabolism of Candidatus Reddybacter, identifying a novel clade of the particulate hydrocarbon monooxygenase (pmo) that may play a central role in MCH and MCP metabolism. Through comparative analysis of 174 genomes, we parsed the taxonomy of the Porticoccaceae family and found evidence suggesting the acquisition of pmo and other genes related to the degradation of cyclic and branched hydrophobic compounds were likely key events in the ecology and evolution of this group of organisms.


Assuntos
Cicloparafinas , Gammaproteobacteria , Microbiota , Poluição por Petróleo , Petróleo , Sedimentos Geológicos/microbiologia , Hidrocarbonetos/metabolismo , Água do Mar/microbiologia , Gammaproteobacteria/genética , Petróleo/metabolismo , Golfo do México , Biodegradação Ambiental
2.
J Wildl Dis ; 57(2): 273-281, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33822149

RESUMO

Avian keratin disorder (AKD), a disease of unknown etiology characterized by debilitating beak overgrowth, has increasingly affected wild bird populations since the 1990s. A novel picornavirus, poecivirus, is closely correlated with disease status in Black-capped Chickadees (Poecile atricapillus) in Alaska, US. However, our knowledge of the relationship between poecivirus and beak deformities in other species and other geographic areas remains limited. The growing geographic scope and number of species affected by AKD-like beak deformities require a better understanding of the causative agent to evaluate the population-level impacts of this epizootic. Here, we tested eight individuals from six avian species with AKD-consistent deformities for the presence of poecivirus: Mew Gull (Larus canus), Hairy Woodpecker (Picoides villosus), Black-billed Magpie (Pica hudsonia), American Crow (Corvus brachyrhynchos), Red-breasted Nuthatch (Sitta canadensis), and Blackpoll Warbler (Setophaga striata). The birds were sampled in Alaska and Maine (1999-2016). We used targeted PCR followed by Sanger sequencing to test for the presence of poecivirus in each specimen and to obtain viral genome sequence from virus-positive host individuals. We detected poecivirus in all individuals tested, but not in negative controls (water and tissue samples). Furthermore, we used unbiased metagenomic sequencing to test for the presence of other pathogens in six of these specimens (Hairy Woodpecker, two American Crows, two Red-breasted Nuthatches, Blackpoll Warbler). This analysis yielded additional viral sequences from several specimens, including the complete coding region of poecivirus from one Red-breasted Nuthatch, which we confirmed via targeted PCR followed by Sanger sequencing. This study demonstrates that poecivirus is present in individuals with AKD-consistent deformities from six avian species other than Black-capped Chickadee. While further investigation will be required to explore whether there exists a causal link between this virus and AKD, this study demonstrates that poecivirus is not geographically restricted to Alaska, but rather occurs elsewhere in North America.


Assuntos
Bico/patologia , Doenças das Aves/patologia , Infecções por Picornaviridae/veterinária , Picornaviridae/isolamento & purificação , Animais , Bico/virologia , Doenças das Aves/virologia , Aves , Cloaca/virologia , América do Norte , Infecções por Picornaviridae/epidemiologia , Infecções por Picornaviridae/virologia , Reação em Cadeia da Polimerase/veterinária
3.
Front Microbiol ; 6: 185, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25852655

RESUMO

Mosquitoes, most often recognized for the microbial agents of disease they may carry, harbor diverse microbial communities that include viruses, bacteria, and fungi, collectively called the microbiota. The composition of the microbiota can directly and indirectly affect disease transmission through microbial interactions that could be revealed by its characterization in natural populations of mosquitoes. Furthermore, the use of shotgun metagenomic sequencing (SMS) approaches could allow the discovery of unknown members of the microbiota. In this study, we use RNA SMS to characterize the microbiota of seven individual mosquitoes (species include Culex pipiens, Culiseta incidens, and Ochlerotatus sierrensis) collected from a variety of habitats in California, USA. Sequencing was performed on the Illumina HiSeq platform and the resulting sequences were quality-checked and assembled into contigs using the A5 pipeline. Sequences related to single stranded RNA viruses of the Bunyaviridae and Rhabdoviridae were uncovered, along with an unclassified genus of double-stranded RNA viruses. Phylogenetic analysis finds that in all three cases, the closest relatives of the identified viral sequences are other mosquito-associated viruses, suggesting widespread host-group specificity among disparate viral taxa. Interestingly, we identified a Narnavirus of fungi, also reported elsewhere in mosquitoes, that potentially demonstrates a nested host-parasite association between virus, fungi, and mosquito. Sequences related to 8 bacterial families and 13 fungal families were found across the seven samples. Bacillus and Escherichia/Shigella were identified in all samples and Wolbachia was identified in all Cx. pipiens samples, while no single fungal genus was found in more than two samples. This study exemplifies the utility of RNA SMS in the characterization of the natural microbiota of mosquitoes and, in particular, the value of identifying all microbes associated with a specific host.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA