Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 26(4)2021 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-33557246

RESUMO

Influenza virus is a highly contagious zoonotic respiratory disease that causes seasonal outbreaks each year and unpredictable pandemics occasionally with high morbidity and mortality rates, posing a great threat to public health worldwide. Besides the limited effect of vaccines, the problem is exacerbated by the lack of drugs with strong antiviral activity against all flu strains. Currently, there are two classes of antiviral drugs available that are chemosynthetic and approved against influenza A virus for prophylactic and therapeutic treatment, but the appearance of drug-resistant virus strains is a serious issue that strikes at the core of influenza control. There is therefore an urgent need to develop new antiviral drugs. Many reports have shown that the development of novel bioactive plant extracts and microbial extracts has significant advantages in influenza treatment. This paper comprehensively reviews the development and effects of chemosynthetic drugs, plant extracts, and microbial extracts with influenza antiviral activity, hoping to provide some references for novel antiviral drug design and promising alternative candidates for further anti-influenza drug development.


Assuntos
Antivirais/farmacologia , Descoberta de Drogas , Orthomyxoviridae/efeitos dos fármacos , Animais , Interações entre Hospedeiro e Microrganismos/efeitos dos fármacos , Humanos , Orthomyxoviridae/fisiologia , Replicação Viral/efeitos dos fármacos
2.
Vet Microbiol ; 292: 110052, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38492531

RESUMO

H5N8 highly pathogenic avian influenza virus (HPAIV) has caused huge losses to the global poultry industry and critically threatens public health. Chickens are the important host for the transmission. However, the distribution of H5N8 avian influenza virus (AIV) in chicken and the infected cell types are limitedly studied. Therefore, in this study, we detected viral replication and infection by generating recombinant H5N8 AIV expressing an easily tracked mApple fluorescent reporter. The results showed that recombinant viruses passaged four times in chicken embryos successfully expressed mApple proteins detected by fluorescence microscopy and WB, which verified that the constructed recombinant viruses were stable. Compared to parental virus, although recombinant virus attenuated for replication in MDCK cells, it can still replicate effectively, and form visible plaques. Importantly, the experiments on infection of chicken PBMCs in vitro showed a strong correlation between mApple positivity rate and NP positivity rate (r = 0.7594, P =0.0176), demonstrating that mApple reporter could be used as an indicator to accurately reflect AIV infection. Then we infected monocytes/macrophages in PBMCs in vitro and detected the mApple positive percentage was 55.1%-80.4%, which confirmed the chicken primary monocytic/macrophages are important target cells for avian influenza virus infection. In chicken, compared with parental virus, the recombinant virus-infected chickens had lower viral titers in oropharyngeal cloacal and organs, but it can cause significant pathogenicity in chicken and the mortality rate was approximately 66%. In addition, the results of bioluminescent imaging showed that the fluorescence in the lungs was strongest at 5 days post-infection (DPI). Finally, we discovered the mApple positive expression in chicken lung immune cells (CD45+ cells), especially some T cells (CD4 and CD8 T cells) also carrying mApple, which indicates that the H5N8 AIV showed a tropism for immune cells including chicken T cells causing potentially aggressive against cellular immunity. We have provided a simple visualization for further exploration of H5N8 AIV infected chicken immune cells, which contributes to further understanding pathogenic mechanism of H5N8 AIV infection in chicken.


Assuntos
Doenças Transmissíveis , Vírus da Influenza A Subtipo H5N8 , Vírus da Influenza A , Influenza Aviária , Influenza Humana , Infecções por Orthomyxoviridae , Embrião de Galinha , Animais , Humanos , Galinhas/genética , Genes Reporter , Infecções por Orthomyxoviridae/veterinária , Vírus da Influenza A/genética , Doenças Transmissíveis/veterinária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA