Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
J Transl Med ; 21(1): 886, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38057816

RESUMO

Ovarian cancer is the leading cause of death from gynecologic illnesses worldwide. High-grade serous ovarian cancer (HGSOC) is a gynecological tumor that accounts for roughly 70% of ovarian cancer deaths in women. Runt-related transcription factor 1(RUNX1) proteins were identified with overexpression in the HGSOC. However, the roles of RUNX1 in the development of HGSOC are poorly understood. In this study, combined with whole-transcriptome analysis and multiple research methods, RUNX1 was identified as vital in developing HGSOC. RUNX1 knockdown inhibits the physiological function of ovarian cancer cells and regulates apoptosis through the FOXO1-Bcl2 axis. Down-regulated RUNX1 impairs EMT function through the EGFR-AKT-STAT3 axis signaling. In addition, RUNX1 knockdown can significantly increase the sensitivity to clinical drug therapy for ovarian cancer. It is strongly suggested that RUNX1 work as a potential diagnostic and therapeutic target for HGSOC patients with better prognoses and treatment options. It is possible to generate novel potential targeted therapy strategies and translational applications for serous ovarian carcinoma patients with better clinical outcomes.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core , Neoplasias Ovarianas , Humanos , Feminino , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Subunidade alfa 2 de Fator de Ligação ao Core/uso terapêutico , Linhagem Celular Tumoral , Neoplasias Ovarianas/tratamento farmacológico , Prognóstico , Apoptose/genética
2.
Cancer Cell Int ; 21(1): 697, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34930255

RESUMO

BACKGROUND: Ovarian cancer is the leading cause of death from gynaecologic illnessed worldwide. Platelet-activating factor acetyl hydrolase IB2 (PAF-AH IB2) is an intracellular serine esterase that hydrolyzes platelet-activating factor, a G-protein-like trimer with two catalytic subunits and one regulatory subunit. The regulatory role of PAF-AH IB2 in the oncogenesis of ovarian cancer is not well understood. METHODS: In this study, the TCGA dataset and clinical cancer tissue microarray were utilized to investigate abnormal overexpression of PAF-AH IB2 in ovarian cancer. To investigate the impact on the cell proliferation, migration, and tumorigenicity in vitro, PAF-AH IB2 stable knocking down (KD) ovarian cancer cells were established by ShRNA. The whole transcription profiling, tyrosine kinase profiling and standard cell functional assays were integrated to explore the biological importance and mechanism of PAF-AH IB2 modulated in ovarian cancer. RESULTS: PAF-AH IB2 was identified significantly overexpression in four subtypes of ovarian cancer. In vitro, PAF-AH IB2 KD significantly inhibited cancer cell proliferation, migration, and tumorigenicity, activated caspases and caused cell cycle arrest, and made the cells more sensitive to PAF. PAF-AH 1B2 KD cells down-regulated several key regulators of the multiple tyrosine kinases-mediated signaling pathway, suggesting a novel interaction network between the growth factor receptors pathway and PAF-AH 1B2 mediated PAF signalling. CONCLUSIONS: These findings revealed a previously undiscovered role for PAF-AH IB2 as a potenial therapy target and essential signaling mediators in ovarian cancer pathogenesis, as well as new possible preventive and therapeutic strategies to inhibit this enzyme in clinical treatment for ovarian cancer.

3.
Int J Mol Sci ; 22(23)2021 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-34884921

RESUMO

Ischemic cardiomyopathy is the most frequent type of heart disease, and it is a major cause of myocardial infarction (MI) and heart failure (HF), both of which require expensive medical treatment. Precise biomarkers and therapy targets must be developed to enhance improve diagnosis and treatment. In this study, the transcriptional profiles of 313 patients' left ventricle biopsies were obtained from the PubMed database, and functional genes that were significantly related to ischemic cardiomyopathy were screened using the Weighted Gene Co-Expression Network Analysis and protein-protein interaction (PPI) networks enrichment analysis. The rat myocardial infarction model was developed to validate these findings. Finally, the putative signature genes were blasted through the common Cardiovascular Disease Knowledge Portal to explore if they were associated with cardiovascular disorder. Three interferon stimulated genes (IFIT2, IFIT3 and IFI44L), as well as key pathways, have been identified as potential biomarkers and therapeutic targets for ischemic cardiomyopathy, and their alternations or mutations have been proven to be strongly linked to cardiac disorders. These novel signature genes could be utilized as bio-markers or potential therapeutic objectives in precise clinical diagnosis and treatment of ischemic cardiomyopathy.


Assuntos
Proteínas Reguladoras de Apoptose/genética , Cardiomiopatias/genética , Interferons/genética , Infarto do Miocárdio/genética , Proteínas de Ligação a RNA/genética , Proteínas Supressoras de Tumor/genética , Animais , Biomarcadores , Cardiomiopatias/patologia , Modelos Animais de Doenças , Redes Reguladoras de Genes , Ventrículos do Coração/patologia , Humanos , Interferons/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Masculino , Metoprolol/farmacologia , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/fisiopatologia , Isquemia Miocárdica/genética , Miócitos Cardíacos/patologia , Mapas de Interação de Proteínas/genética , Ratos Sprague-Dawley , Função Ventricular Esquerda
4.
BMC Cancer ; 20(1): 199, 2020 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-32164602

RESUMO

BACKGROUND: The fine-needle aspiration (FNA) biopsy was broadly applied to clinical diagnostics evaluation for thyroid carcinomas nodule, while companioning with higher uncertainty rate (15~30%) to identify malignancy for cytological indeterminate cases. It is requirement to discover novel molecular biomarkers to differentiate malignant thyroid nodule more precise. METHODS: We employed weighted gene co-expression network analysis (WGCNA) to discover genes significantly associated with malignant histopathology for cytological indeterminate nodules. In addition, identified significantly genes were validated through another independently investigations of thyroid carcinomas patient's samples via cBioportal and Geipa. The key function pathways of significant genes involving were blast through GenClip. RESULTS: Twenty-four signature genes were identified significantly related to thyroid nodules malignancy. Furthermore, five novel genes with missense mutation, FN1 (R534P), PROS1((K200I), (Q571K)), SCEL (T320S), SLC34A2(T688M) and TENM1 (S1131F), were highlighted as potential biomarkers to rule out nodules malignancy. It was identified that the key functional pathways involving in thyroid carcinomas. CONCLUSION: These results will be helpful to better understand the mechanism of thyroid nodules malignant transformation and characterize the potentially biomarkers for thyroid carcinomas early diagnostics.


Assuntos
Biomarcadores Tumorais/genética , Redes Reguladoras de Genes , Mutação de Sentido Incorreto , Neoplasias da Glândula Tireoide/diagnóstico , Nódulo da Glândula Tireoide/diagnóstico , Biópsia por Agulha Fina , Proteínas de Transporte/genética , Detecção Precoce de Câncer , Feminino , Fibronectinas/genética , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Proteínas do Tecido Nervoso/genética , Proteína S/genética , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIb/genética , Tenascina/genética , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/patologia , Nódulo da Glândula Tireoide/genética , Nódulo da Glândula Tireoide/patologia
5.
Nano Lett ; 18(2): 793-797, 2018 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-29327927

RESUMO

Edge morphology and lattice orientation of single-crystal molybdenum disulfide (MoS2) monolayers, a transition metal dichalcogenide (TMD), possessing a triangular shape with different edges grown by chemical vapor deposition are characterized by atomic force microscopy and transmission electron microscopy. Multiphoton laser scanning microscopy is utilized to study one-dimensional atomic edges of MoS2 monolayers with localized midgap electronic states, which result in greatly enhanced optical second-harmonic generation (SHG). Microscopic S-zigzag edge and S-Mo Klein edge (bare Mo atoms protruding from a S-zigzag edge) terminations and the edge-atom dependent resonance energies can therefore be deduced based on SHG images. Theoretical calculations based on density functional theory clearly explain the lower energy of the S-zigzag edge states compared to the corresponding S-Mo Klein edge states. Characterization of the atomic-scale variation of edge-enhanced SHG is a step forward in this full-optical and high-yield technique of atomic-layer TMDs.

6.
Gut ; 65(1): 33-46, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25431457

RESUMO

BACKGROUND: A major cause of enteric infection, Gram-negative pathogenic bacteria activate mucosal inflammation through lipopolysaccharide (LPS) binding to intestinal toll-like receptor 4 (TLR4). Breast feeding lowers risk of disease, and human milk modulates inflammation. OBJECTIVE: This study tested whether human milk oligosaccharides (HMOSs) influence pathogenic Escherichia coli-induced interleukin (IL)-8 release by intestinal epithelial cells (IECs), identified specific proinflammatory signalling molecules modulated by HMOSs, specified the active HMOS and determined its mechanism of action. METHODS: Models of inflammation were IECs invaded by type 1 pili enterotoxigenic E. coli (ETEC) in vitro: T84 modelled mature, and H4 modelled immature IECs. LPS-induced signalling molecules co-varying with IL-8 release in the presence or absence of HMOSs were identified. Knockdown and overexpression verified signalling mediators. The oligosaccharide responsible for altered signalling was identified. RESULTS: HMOSs attenuated LPS-dependent induction of IL-8 caused by ETEC, uropathogenic E. coli, and adherent-invasive E. coli (AIEC) infection, and suppressed CD14 transcription and translation. CD14 knockdown recapitulated HMOS-induced attenuation. Overexpression of CD14 increased the inflammatory response to ETEC and sensitivity to inhibition by HMOSs. 2'-fucosyllactose (2'-FL), at milk concentrations, displayed equivalent ability as total HMOSs to suppress CD14 expression, and protected AIEC-infected mice. CONCLUSIONS: HMOSs and 2'-FL directly inhibit LPS-mediated inflammation during ETEC invasion of T84 and H4 IECs through attenuation of CD14 induction. CD14 expression mediates LPS-TLR4 stimulation of portions of the 'macrophage migration inhibitory factors' inflammatory pathway via suppressors of cytokine signalling 2/signal transducer and activator of transcription 3/NF-κB. HMOS direct inhibition of inflammation supports its functioning as an innate immune system whereby the mother protects her vulnerable neonate through her milk. 2'-FL, a principal HMOS, quenches inflammatory signalling.


Assuntos
Enterócitos/imunologia , Infecções por Escherichia coli/imunologia , Interleucina-8/metabolismo , Receptores de Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/imunologia , Leite Humano/imunologia , Trissacarídeos/imunologia , Animais , Linhagem Celular , Enterócitos/metabolismo , Escherichia coli Enterotoxigênica/imunologia , Ensaio de Imunoadsorção Enzimática , Feminino , Citometria de Fluxo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Leite Humano/química , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Receptor 4 Toll-Like/metabolismo , Trissacarídeos/metabolismo
7.
Biostatistics ; 16(1): 98-112, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24963011

RESUMO

The detection of differentially expressed (DE) genes, that is, genes whose expression levels vary between two or more classes representing different experimental conditions (say, diseases), is one of the most commonly studied problems in bioinformatics. For example, the identification of DE genes between distinct disease phenotypes is an important first step in understanding and developing treatment drugs for the disease. We present a novel approach to the problem of detecting DE genes that is based on a test statistic formed as a weighted (normalized) cluster-specific contrast in the mixed effects of the mixture model used in the first instance to cluster the gene profiles into a manageable number of clusters. The key factor in the formation of our test statistic is the use of gene-specific mixed effects in the cluster-specific contrast. It thus means that the (soft) assignment of a given gene to a cluster is not crucial. This is because in addition to class differences between the (estimated) fixed effects terms for a cluster, gene-specific class differences also contribute to the cluster-specific contributions to the final form of the test statistic. The proposed test statistic can be used where the primary aim is to rank the genes in order of evidence against the null hypothesis of no DE. We also show how a P-value can be calculated for each gene for use in multiple hypothesis testing where the intent is to control the false discovery rate (FDR) at some desired level. With the use of publicly available and simulated datasets, we show that the proposed contrast-based approach outperforms other methods commonly used for the detection of DE genes both in a ranking context with lower proportion of false discoveries and in a multiple hypothesis testing context with higher power for a specified level of the FDR.


Assuntos
Análise por Conglomerados , Interpretação Estatística de Dados , Perfilação da Expressão Gênica/estatística & dados numéricos , Expressão Gênica/genética , Modelos Genéticos , Neoplasias da Mama/genética , Feminino , Humanos
8.
J Biol Chem ; 289(21): 14771-81, 2014 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-24713698

RESUMO

Small-molecule, ligand-activated G protein-coupled receptors are generally thought to be rapidly desensitized within a period of minutes through receptor phosphorylation and internalization after repeated or prolonged stimulation. This transient G protein-coupled receptor activation remains at odds with many observed long-lasting cellular and physiological responses. Here, using live cell imaging of cAMP with a FRET-based biosensor and myocyte contraction assay, we show that the catecholamine-activated ß1 adrenergic receptor (ß1AR) continuously stimulates second messenger cAMP synthesis in primary cardiac myocytes and neurons, which lasts for more than 8 h (a decay t½ of 3.9 h) in cardiac myocytes. However, the ß1AR-induced cAMP signal is counterbalanced and masked by the receptor-bound phosphodiesterase (PDE) 4D8-dependent cAMP hydrolysis. Inhibition of PDE4 activity recovers the receptor-induced cAMP signal and promotes contractile response in mouse hearts during extended periods of agonist stimulation. ß1AR associates with PDE4D8 through the receptor C-terminal PDZ motif-dependent binding to synaptic-associated protein 97 (SAP97). Knockdown of SAP97 or mutation of the ß1AR PDZ motif disrupts the complex and promotes sustained agonist-induced cAMP activity, PKA phosphorylation, and cardiac myocyte contraction response. Together, these findings unveil a long lasting adrenergic signal in neurons and myocytes under prolonged stimulation and an underappreciated role of PDE that is essential in classic receptor signaling desensitization and in maintaining a long lasting cAMP equilibrium for ligand-induced physiological response.


Assuntos
Tamanho Celular , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Miócitos Cardíacos/metabolismo , Receptores Adrenérgicos beta 1/metabolismo , Transdução de Sinais/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Agonistas Adrenérgicos beta/farmacologia , Animais , Animais Recém-Nascidos , Western Blotting , Catecolaminas/farmacologia , Tamanho Celular/efeitos dos fármacos , Células Cultivadas , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Proteína 1 Homóloga a Discs-Large , Transferência Ressonante de Energia de Fluorescência , Coração/efeitos dos fármacos , Coração/fisiologia , Técnicas In Vitro , Isoproterenol/farmacologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Microscopia de Fluorescência , Contração Miocárdica/efeitos dos fármacos , Contração Miocárdica/genética , Contração Miocárdica/fisiologia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Inibidores da Fosfodiesterase 4/farmacologia , Fosforilação/efeitos dos fármacos , Receptores Adrenérgicos beta 1/genética , Rolipram/farmacologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
9.
Proc Natl Acad Sci U S A ; 109(17): 6578-83, 2012 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-22493261

RESUMO

Inflammation is a significant player in the progression of heart failure and has detrimental effects on cardiac function. Prostaglandin (PG)E2, a major proinflammatory prostanoid in the cardiovascular system, is a potent stimulus in inducing intracellular cAMP but minimally affects cardiac contractile function. Here, we show that the PGE2 stimulation attenuates the adrenergic-induced cardiac contractile response in animal hearts. Stimulation with PGE2 leads to stimulatory G protein (Gs)-dependent production of cAMP. However, the induced cAMP is spatially restricted because of its degradation by phosphodiesterase (PDE)4 and cannot access the intracellular sarcoplasmic reticulum (SR) for increasing calcium signaling and myocyte contraction. Moreover, pretreatment with PGE2 significantly inhibits PKA activities at the SR induced by a ß-adrenergic agonist, isoproterenol, and subsequently blocks isoproterenol-induced PKA phosphorylation of phospholamban and contractile responses in myocytes. Further analysis reveals that the PGE2-induced cAMP/PKA is sufficient to phosphorylate and activate PDE4D isoforms, which, in turn, spatially inhibits the diffusion of adrenergic-induced cAMP from the plasma membrane to the SR. Inhibition of PDE4 rescues the adrenergic-induced increase in cAMP/PKA activities at the SR, PKA phosphorylation of phospholamban, and contractile responses in PGE2-pretreated myocytes. Thus, this offers an example that one Gs-coupled receptor is able to inhibit the intracellular signaling transduction initiated by another Gs-coupled receptor via controlling the diffusion of cAMP, presenting a paradigm for G protein-coupled receptor (GPCR) signal transduction. It also provides a mechanism for the integration of signaling initiated by different neurohormonal stimuli, as well as long-term effects of chronically circulating proinflammatory factors in myocardium.


Assuntos
AMP Cíclico/metabolismo , Miocárdio/metabolismo , Diester Fosfórico Hidrolases/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Antagonistas Adrenérgicos beta/farmacologia , Animais , Sinalização do Cálcio , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Dinoprostona/farmacologia , Isoproterenol/farmacologia , Camundongos , Contração Miocárdica/efeitos dos fármacos , Receptores Adrenérgicos beta/efeitos dos fármacos , Transdução de Sinais , Frações Subcelulares/enzimologia , Frações Subcelulares/metabolismo
10.
ACS Omega ; 9(13): 15304-15310, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38585084

RESUMO

ZnGa2O4 sensing films were prepared using an RF magnetron sputtering system and connected to a commercial metal oxide semiconductor field-effect transistor (MOSFET) as the extended-gate field-effect transistor (EGFET) to detect pH values. Experimental parameters were adjusted by varying the oxygen flow rate in the process chamber to produce ZnGa2O4 sensing films with different oxygen ratios. These films were then treated in a furnace tube at an annealing temperature of 700 °C. The sensitivity and linearity of the constant current mode and the constant voltage mode were measured and analyzed in the pH range of 2-12. Under the deposition conditions with an oxygen ratio of 6%, the sensitivity reached 23.14 mV/pH and 33.49 µA/pH, with corresponding linearity values of 92.1 and 96.15%, respectively. Finally, the sensing performance of the ZnGa2O4 EGFET pH sensor with and without annealing processes was analyzed and compared.

11.
J Cell Sci ; 124(Pt 13): 2153-64, 2011 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-21628423

RESUMO

Establishing new adhesions at the extended leading edges of motile cells is essential for stable polarity and persistent motility. Despite recent identification of signaling pathways that mediate polarity and chemotaxis in neutrophils, little is known about molecular mechanisms governing cell-extracellular-matrix (ECM) adhesion in these highly polarized and rapidly migrating cells. Here, we describe a signaling pathway in neutrophils that is essential for localized integrin activation, leading edge attachment and persistent migration during chemotaxis. This pathway depends upon G(i)-protein-mediated activation and leading edge recruitment of Lyn, a non-receptor tyrosine kinase belonging to the Src kinase family. We identified the small GTPase Rap1 as a major downstream effector of Lyn to regulate neutrophil adhesion during chemotaxis. Depletion of Lyn in neutrophil-like HL-60 cells prevented chemoattractant-induced Rap1 activation at the leading edge of the cell, whereas ectopic expression of Rap1 largely rescued the defects induced by Lyn depletion. Furthermore, Lyn controls spatial activation of Rap1 by recruiting the CrkL-C3G protein complex to the leading edge. Together, these results provide novel mechanistic insights into the poorly understood signaling network that controls leading edge adhesion during chemotaxis of neutrophils, and possibly other amoeboid cells.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adesão Celular/fisiologia , Fator 2 de Liberação do Nucleotídeo Guanina/metabolismo , Neutrófilos/citologia , Neutrófilos/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Ligação a Telômeros/metabolismo , Quinases da Família src/metabolismo , Linhagem Celular , Movimento Celular , Quimiotaxia/fisiologia , Matriz Extracelular/metabolismo , Humanos , Ligação Proteica , Complexo Shelterina , Transdução de Sinais , Quinases da Família src/genética
12.
Biomedicines ; 11(9)2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37760803

RESUMO

Ovarian cancer is the leading cause of gynecological death worldwide, and its poor prognosis and high mortality seriously affect the life of ovarian cancer patients. Runt-related transcription factor 1 (RUNX1) has been widely studied in hematological diseases and plays an important role in the occurrence and development of hematological diseases. In recent years, studies have reported the roles of RUNX1 in solid tumors, including the significantly increased expression of RUNX1 in ovarian cancer. In ovarian cancer, the dysregulation of the RUNX1 signaling pathway has been implicated in tumor progression, metastasis, and response to therapy. At the same time, the decreased expression of RUNX1 in ovarian cancer can significantly improve the sensitivity of clinical chemotherapy and provide theoretical support for the subsequent diagnosis and treatment target of ovarian cancer, providing prognosis and treatment options to patients with ovarian cancer. However, the role of RUNX1 in ovarian cancer remains unclear. Therefore, this article reviews the relationship between RUNX1 and the occurrence and development of ovarian cancer, as well as the closely regulated signaling pathways, to provide some inspiration and theoretical support for future research on RUNX1 in ovarian cancer and other diseases.

13.
BMC Cancer ; 12: 329, 2012 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-22852552

RESUMO

BACKGROUND: Aldehyde dehydrogenases belong to a superfamily of detoxifying enzymes that protect cells from carcinogenic aldehydes. Of the superfamily, ALDH1A1 has gained most attention because current studies have shown that its expression is associated with human cancer stem cells. However, ALDH1A1 is only one of the 19 human ALDH subfamilies currently known. The purpose of the present study was to determine if the expression and activities of other major ALDH isozymes are associated with human ovarian cancer and ovarian cancer sphere cultures. METHODS: Immunohistochemistry was used to delineate ALDH isozyme localization in clinical ovarian tissues. Western Blot analyses were performed on lysates prepared from cancer cell lines and ovarian cancer spheres to confirm the immunohistochemistry findings. Quantitative reverse transcription-polymerase chain reactions were used to measure the mRNA expression levels. The Aldefluor® assay was used to measure ALDH activity in cancer cells from the four tumor subtypes. RESULTS: Immunohistochemical staining showed significant overexpression of ALDH1A3, ALDH3A2, and ALDH7A1 isozymes in ovarian tumors relative to normal ovarian tissues. The expression and activity of ALDH1A1 is tumor type-dependent, as seen from immunohistochemisty, Western blot analysis, and the Aldefluor® assay. The expression was elevated in the mucinous and endometrioid ovarian epithelial tumors than in serous and clear cell tumors. In some serous and most clear cell tumors, ALDH1A1 expression was found in the stromal fibroblasts. RNA expression of all studied ALDH isozymes also showed higher expression in endometrioid and mucinous tumors than in the serous and clear cell subtypes. The expression of ALDH enzymes showed tumor type-dependent induction in ovarian cancer cells growing as sphere suspensions in serum-free medium. CONCLUSIONS: The results of our study indicate that ALDH enzyme expression and activity may be associated with specific cell types in ovarian tumor tissues and vary according to cell states. Elucidating the function of the ALDH isozymes in lineage differentiation and pathogenesis may have significant implications for ovarian cancer pathophysiology.


Assuntos
Aldeído Desidrogenase/metabolismo , Isoenzimas/metabolismo , Neoplasias Ovarianas/enzimologia , Ensaios Enzimáticos Clínicos/métodos , Feminino , Humanos , Imuno-Histoquímica , Neoplasias Ovarianas/patologia , Esferoides Celulares/enzimologia , Células Tumorais Cultivadas
14.
Biomedicines ; 10(11)2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36359361

RESUMO

The incidence and mortality of colorectal cancer have shown an upward trend in the past decade. Therefore, the prevention, diagnosis, and treatment of colorectal cancer still need our continuous attention. Finding compounds with strong anticancer activity and low toxicity is a good strategy for colorectal cancer (CRC) therapy. Trametes versicolor is a traditional Chinese medicinal mushroom with a long history of being used to regulate immunity and prevent cancer. Its extractions were demonstrated with strong cell growth inhibitory activity on human colorectal tumor cells, while the anticancer activity of them is not acted through a direct cytotoxic effect. However, the intricacy and high molecular weight make mechanistic research difficult, which restricts their further application as a medication in clinical cancer treatment. Recent research has discovered a small molecule polysaccharide peptide derived from Trametes versicolor that has a distinct structure after decades of Trametes versicolor investigation. Uncertain molecular weight and a complex composition are problems that have been solved through studies on its structure, and it was demonstrated to have strong anti-proliferation activity on colorectal cancer in vitro and in vivo via interaction with EGFR signaling pathway. It opens up new horizons for research in this field, and these low molecular weight polysaccharide peptides provide a new insight of regulation of colorectal cancer proliferation and have great potential as drugs in the treatment of colorectal cancer.

15.
Clin Transl Med ; 12(11): e973, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36377223

RESUMO

BACKGROUND: Colon cancer is the second leading cause of death worldwide. Exploring key regulators in colon cancer metastatic progression could lead to better outcomes for patients. METHODS: Initially, the transcriptional profiles of 681 colonrectal cancer (CRC) cases were used to discover signature genes that were significantly correlated with colon cancer metastasis. These signature genes were then validated using another independent 210 CRC cases' transcriptomics and proteomics profiles, and Kaplan-Meier regression analyses were used to screen the key regulators with patients' survival. Immunohistochemical staining was used to confirm the biomarkers, and transit knockdown was used to explore their implications on colon cancer cells migration and invasion abilities. The impact on the key signalling molecules in epithelial-mesenchymal transition (EMT) process that drive tumour metastasis was tested using Western blot. The response to clinical standard therapeutic drugs was compared to clinical prognosis of key regulators using an ROC plotter. RESULTS: Five genes (BGN, THBS2, SPARC, CDH11 and SPP1) were initially identified as potential biomarkers and therapeutic targets of colon cancer metastasis. The most significant signatures associated with colon cancer metastasis were determined to be BGN and THBS2. Furthermore, highly expression of BGN and THBS2 in tumours was linked to a worse survival rate. BGN and THBS2 knockdown significantly reduced colon cancer cells migration and invasion, as well as down-regulating three EMT-related proteins (Snail, Vimentin and N-cadherin), and increasing the proliferation inhibitory effect of 5-fluorouracil, irinotecan and oxaliplatin treatment. CONCLUSIONS: CRC metastatic progression, EMT phenotypic transition and poor survival time have been linked to BGN and THBS2. They could be utilized as potential diagnostic and therapeutic targets for colon cancer metastatic patients with a better prognosis.


Assuntos
Neoplasias do Colo , Humanos , Biglicano/metabolismo , Biglicano/farmacologia , Biomarcadores , Movimento Celular/genética , Neoplasias do Colo/diagnóstico , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Transição Epitelial-Mesenquimal/genética , Prognóstico
16.
RSC Med Chem ; 13(10): 1212-1224, 2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36325395

RESUMO

Our previous study demonstrated that paeoveitol D, a benzofuran compound isolated from Paeonia veitchii, displayed activity on MT1 and MT2 receptors with agonistic ratios of 57.5% and 51.6% at a concentration of 1 mM. To explore the structure-activity relationships, 34 paeoveitol D derivatives were synthesized and evaluated for their MT1 and MT2 agonistic activities using the Fluo-8 calcium assay. Among them, 16 and 18 derivatives increased agonistic activities on the MT1 and MT2 receptors, respectively. Compound 18 indicated EC50 values of 21.0 and 298.9 µM on MT1 and MT2 receptors in agonistic dose response curves with Tango assays and shortened immobility time in the forced swim test. The preliminary mechanism-of-action investigation manifested that the antidepressant activity of compound 18 may be mediated by promoting serotonin (5-HT) and dopamine (DA) levels in the mice brain. Compound 18 also showed favorable pharmacokinetic profiles and low toxicity in vivo. These results suggest that compound 18 could be a potential antidepressant agent.

17.
Biochem Biophys Res Commun ; 404(2): 581-6, 2011 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-21130738

RESUMO

The second messenger cAMP-dependent protein kinase A (PKA) plays an important role in the various cellular and physiological responses. On the sarcoplasmic reticulum (SR) in cardiomyocytes, PKA regulates the calcium cycling for exciting-contraction coupling, which is often dysfunctional in a variety of heart diseases including heart failure. Here, we have developed a novel FRET-based A-kinase activity biosensor (AKAR), termed SR-AKAR3, to visualize the PKA dynamics on the SR. Activation of adrenergic receptor induces a rapid and significant increase in SR-AKAR3 FRET ratio, which is dependent on agonist occupation of the receptor and inhibited by H-89, a PKA inhibitor. Interestingly, direct activation of adenylyl cyclases or application of a cAMP analog 8-Br-cAMP induced much slower and smaller increases in SR-AKAR3 FRET ratio. These data indicate that the signaling induced by adrenergic stimulation displays a preferential access to the SR in comparison to those by direct activation of adenylyl cyclases. More, SR-AKAR3 mimics endogenous protein phospholamban on the SR for PKA-mediated phosphorylation and myocyte contraction response under adrenergic stimulation. Together, this new PKA activity biosensor provides a useful tool to directly visualize the dynamic regulation of PKA activity on the SR in cardiomyocytes under various physiological and clinical conditions.


Assuntos
Técnicas Biossensoriais , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Transferência Ressonante de Energia de Fluorescência/métodos , Miócitos Cardíacos/enzimologia , Retículo Sarcoplasmático/enzimologia , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/análise , Camundongos , Camundongos Endogâmicos , Contração Miocárdica , Receptores Adrenérgicos beta/metabolismo
18.
J Immunol ; 183(10): 6413-21, 2009 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-19841170

RESUMO

The importance of stromal cells for tumor is akin to soil for seed. However, the interaction among these cells is far from understood. In this study, we show that stromal fibroblasts exist not only during tumor progression but also during regression stage, together with immune effector cells. Coinjection of stromal fibroblasts with tumor cells often promotes tumor growth. However, the presence of IFN-gamma significantly impairs the ability of these cells to promote tumor growth due to a reduced angiogenesis. The mechanism relies mainly on the IFN-gamma-mediated down-regulation of vascular endothelial growth factor production by fibroblasts. The results reveal a novel link between immune cells and nonbone marrow-derived stromal cells, and define stromal fibroblasts as the main targets of IFN-gamma in tumor immunity.


Assuntos
Fibroblastos/imunologia , Interferon gama/imunologia , Neoplasias/imunologia , Neovascularização Patológica/imunologia , Fator A de Crescimento do Endotélio Vascular/imunologia , Animais , Linhagem Celular Tumoral , Quimiocina CXCL12/imunologia , Quimiocina CXCL12/metabolismo , Regulação para Baixo/imunologia , Feminino , Fibroblastos/metabolismo , Interferon gama/metabolismo , Metaloproteinase 2 da Matriz/imunologia , Metaloproteinase 2 da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Nus , Neoplasias/irrigação sanguínea , Neoplasias/patologia , Neovascularização Patológica/metabolismo , Receptores de Interferon/genética , Receptores de Interferon/imunologia , Receptores de Interferon/metabolismo , Células Estromais/imunologia , Células Estromais/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor de Interferon gama
19.
Biomed Pharmacother ; 144: 112339, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34656057

RESUMO

Colorectal cancer is the second deadly cancer in the world. Trametes versicolor is a traditional Chinese medicinal mushroom with a long history of being used to regulate immunity and prevent cancer. Trametes versicolor mushroom extract demonstrates strongly cell growth inhibitory activity on human colorectal tumor cells. In this study, we characterized a novel 12-kDa protein that named musarin, which was purified from Trametes versicolor mushroom extract and showed significant growth inhibition on multiple human colorectal cancer cell lines in vitro. The protein sequence of musarin was determined through enzyme digestion and MS/MS analysis. Furthermore, Musarin, in particular, strongly inhibits aggressive human colorectal cancer stem cell-like CD24+CD44+ HT29 proliferation in vitro and in a NOD/SCID murine xenograft model. Through whole transcription profile and gene enrichment analysis of musarin-treated CSCs-like cells, major signaling pathways and network modulated by musarin have been enriched, including the bioprocess of the Epithelial-Mesenchymal Transition, the EGFR-Ras signaling pathway and enzyme inhibitor activity. Musarin demonstrated tyrosine kinase inhibitory activity in vitro. Musarin strongly attenuated EGFR expression and down-regulated phosphorylation level, thereby slowing cancer cells proliferation. In addition, oral ingestion of musarin significantly inhibited CD24+CD44+ HT29 generated tumor development in SCID/NOD mice with less side effects in microgram doses. Targeting self-renewal aggressive stem-cell like cancer cell proliferation, with higher water solubility and lower cytotoxicity, musarin has shown strong potence to be developed as a promising novel therapeutic drug candidate against colorectal cancers, especially those that acquire chemo-resistance.


Assuntos
Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/tratamento farmacológico , Proteínas Fúngicas/farmacologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Polyporaceae , Inibidores de Proteínas Quinases/farmacologia , Animais , Antineoplásicos/isolamento & purificação , Antineoplásicos/toxicidade , Neoplasias Colorretais/enzimologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/genética , Receptores ErbB/metabolismo , Proteínas Fúngicas/isolamento & purificação , Proteínas Fúngicas/toxicidade , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Células HT29 , Humanos , Masculino , Camundongos Endogâmicos NOD , Camundongos SCID , Células-Tronco Neoplásicas/enzimologia , Células-Tronco Neoplásicas/patologia , Polyporaceae/química , Inibidores de Proteínas Quinases/isolamento & purificação , Inibidores de Proteínas Quinases/toxicidade , Transdução de Sinais , Transcriptoma , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Nutrients ; 13(9)2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34579075

RESUMO

Exosomes are abundance in human body fluids like urine, milk and blood. They act a critical role in extracellular and intracellular communication, intracellular trafficking and physiological regulation. Multiple immune-modulatory components, such as proteins, RNAs and carbohydrates (glycoproteins), have been found in human milk exosomes, which play immune-regulatory functions. However, little is known about oligosaccharides in milk exosomes, the "free sugars", which act critical roles in the development of infant's immature mucosal immune system. In this study, the profile of milk exosomes encapsulated human milk oligosaccharides (HMOs) was calibrated with characteristic oligosaccharides in colostrum and mature milk, respectively. The exosomes containing human milk oligosaccharides were uptaken by macrophages, which were responsible for the establishment of intestinal immunity. Furthermore, mice pretreated with exosome encapsulated HMOs were protected from AIEC infection and had significantly less LPS-induced inflammation and intestinal damage. Exosome encapsulated milk oligosaccharides are regarded to provide a natural manner for milk oligosaccharides to accomplish their critical functions in modifying newborn innate immunity. The understanding of the interaction between a mother's breastfeeding and the development of an infant's mucosal immune system would be advantageous. The transport of milk oligosaccharides to its target via exosome-like particles appears to be promising.


Assuntos
Infecções por Escherichia coli/terapia , Exossomos/imunologia , Macrófagos/imunologia , Leite Humano/imunologia , Oligossacarídeos/imunologia , Animais , Aleitamento Materno , Colostro/química , Colostro/imunologia , Escherichia coli , Infecções por Escherichia coli/imunologia , Feminino , Humanos , Imunidade/efeitos dos fármacos , Recém-Nascido , Inflamação/terapia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Leite Humano/química , Oligossacarídeos/administração & dosagem , Gravidez , Células THP-1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA