Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Soft Matter ; 17(3): 748-757, 2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33231221

RESUMO

Dynamic surfaces which can change their topography with external stimuli have wide application prospects. Liquid crystal network (LCN) is an ideal material for making dynamic surfaces, but traditional methods for LCN dynamic surface manufacturing are difficult to scale up, which limits its applications. This research proposes a new method to fabricate a responsive surface using ink-jet printing technology. Using a liquid crystal monomer mixture as the ink, we printed arrays of droplets onto a glass substrate with a homeotropic alignment layer and polymerized the droplets into deformable LCN hemispheres. An azobenzene diacrylate was copolymerized into the hemispheres to make them photo-responsive to UV light. Because the ink-jet printing method can potentially be used to print countless hemispheres on a large area substrate, large area dynamic surfaces consisting of a multitude of separate dynamic structures can be manufactured. Since the deformation of the entire surface is a periodic repetition of the deformation of a single hemisphere, we characterized the deformation of individual hemispheres, and found that the optical image of hemispheres between crossed polarizers shows a "maltese cross" texture, and 3D surface profiling shows the top surface depresses into a valley after UV-irradiation. This is caused by an order parameter decrease of the homeotropically aligned LC molecules, which leads to a contraction in the alignment direction. The deformation amplitude can be modulated by UV intensity and temperature. This kind of dynamic surface fabricated by ink-jet printing technology can easily be scaled up and is promising for applications such as adjustable micro-lenses or surface wettability.

2.
Micromachines (Basel) ; 10(7)2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31266204

RESUMO

Polymer cholesteric liquid crystal (PCLC) flakes are gaining increasing interest for a wide variety of applications because of their unique optical properties and capabilities. Soft lithography is the most effective way to fabricate regularly shaped PCLC flakes. However, it is not easy to peel the flakes from the mold without breaking them. In order to peel the PCLC flakes from the patterned polydimethylsiloxane (PDMS) mold in a convenient way, in this paper, a method of coating a layer of polyvinyl alcohol (PVA) on a PDMS mold was proposed. The influence of the thickness of the PVA layer on the shape of the PCLC flakes and the release time from the PDMS mold were investigated. The results show that the presence of the PVA layer can speed up the release of the PCLC flakes and help maintain the shape effectively. Notably, the utilization of a PVA layer makes the PDMS mold recyclable. The influence of PCLC flake shape was also studied. This work will promote the development of switchable PCLC flake-based technologies.

3.
ACS Appl Mater Interfaces ; 11(43): 40916-40922, 2019 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-31597426

RESUMO

The paper presents a methodology to control the motion and orientation of suspended reflective cholesteric flakes in a nematic liquid crystal (LC) matrix. The flakes exhibit a dielectric anisotropy which controls their alignment with their in-plane axes parallel to an external electrical dc field. The elastic forces imposed by the LC host affect the switching behavior of the flakes and take care of the realignment to the planar state as soon as the dc field is switched off. When the LC host has a positive dielectric anisotropy, the switching voltage of the flakes is reduced by a factor of 2 in comparison with a LC host with negative dielectric anisotropy or in comparison with an isotropic host. We discovered that the LC host further regulates the back relaxation of cholesteric to return to the planar state upon retrieving the electric field. Whereas, in the isotropic fluid, flakes do not exhibit a preferred orientation when relaxed. Based on this newly proposed principle, we demonstrated its application as an optical switch for smart windows. Depending on the pitch of the cholesteric helix of the flakes, the light of a preset wavelength is reflected. Upon application of an electric field, the embedded flakes rotate their planes perpendicular to the substrate and consequently the incident light becomes fully transmitted without reflection or scattering of light.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA