Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 26(4)2021 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-33670379

RESUMO

A p-type thermoelectric conjugated polymer based on indacenodithiophene and benzothiadiazole is designed and synthesized by replacing normal aliphatic side chains (P1) with conjugated aromatic benzene substituents (P2). The introduced bulky substituent on P2 is detrimental to form the intensified packing of polymers, therefore, it hinders the efficient transporting of the charge carriers, eventually resulting in a lower conductivity compared to that of the polymers bearing aliphatic side chains (P1). These results reveal that the modification of side chains on conjugated polymers is crucial to rationally designed thermoelectric polymers with high performance.


Assuntos
Benzeno/química , Compostos Orgânicos/química , Polímeros/química , Centrais Elétricas
2.
Acta Pharmacol Sin ; 37(5): 698-707, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27041462

RESUMO

AIM: Aberrant c-Met activation plays a critical role in cancer formation, progression and dissemination, as well as in development of resistance to anticancer drugs. Therefore, c-Met has emerged as an attractive target for cancer therapy. The aim of this study was to develop new c-Met inhibitors and elaborate the structure-activity relationships of identified inhibitors. METHODS: Based on the predicted binding modes of Compounds 5 and 14 in docking studies, a new series of c-Met inhibitor-harboring 3-((1H-pyrrolo[3,2-c]pyridin-1-yl)sulfonyl)imidazo[1,2-a]pyridine scaffolds was discovered. Potent inhibitors were identified through extensive optimizations combined with enzymatic and cellular assays. A promising compound was further investigated in regard to its selectivity, its effects on c-Met signaling, cell proliferation and cell scattering in vitro. RESULTS: The most potent Compound 31 inhibited c-Met kinase activity with an IC50 value of 12.8 nmol/L, which was >78-fold higher than those of a panel of 16 different tyrosine kinases. Compound 31 (8, 40, 200 nmol/L) dose-dependently inhibited the phosphorylation of c-Met and its key downstream Akt and ERK signaling cascades in c-Met aberrant human EBC-1 cancer cells. In 12 human cancer cell lines harboring different background levels of c-Met expression/activation, Compound 31 potently inhibited c-Met-driven cell proliferation. Furthermore, Compound 31 dose-dependently impaired c-Met-mediated cell scattering of MDCK cells. CONCLUSION: This series of c-Met inhibitors is a promising lead for development of novel anticancer drugs.


Assuntos
Antineoplásicos/química , Imidazóis/química , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores , Piridinas/química , Animais , Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Cães , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Ligação de Hidrogênio , Imidazóis/síntese química , Imidazóis/farmacologia , Células Madin Darby de Rim Canino , Simulação de Acoplamento Molecular , Piridinas/síntese química , Piridinas/farmacologia , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA