Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(9): e2219952120, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36802416

RESUMO

Social behavior starts with dynamic approach prior to the final consummation. The flexible processes ensure mutual feedback across social brains to transmit signals. However, how the brain responds to the initial social stimuli precisely to elicit timed behaviors remains elusive. Here, by using real-time calcium recording, we identify the abnormalities of EphB2 mutant with autism-associated Q858X mutation in processing long-range approach and accurate activity of prefrontal cortex (dmPFC). The EphB2-dependent dmPFC activation precedes the behavioral onset and is actively associated with subsequent social action with the partner. Furthermore, we find that partner dmPFC activity is responsive coordinately to the approaching WT mouse rather than Q858X mutant mouse, and the social defects caused by the mutation are rescued by synchro-optogenetic activation in dmPFC of paired social partners. These results thus reveal that EphB2 sustains neuronal activation in the dmPFC that is essential for the proactive modulation of social approach to initial social interaction.


Assuntos
Córtex Pré-Frontal , Receptor EphB2 , Comportamento Social , Animais , Camundongos , Encéfalo , Neurônios/fisiologia , Córtex Pré-Frontal/fisiologia , Receptor EphB2/genética , Receptor EphB2/fisiologia
2.
J Chem Phys ; 160(9)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38426512

RESUMO

ReaxFF reactive force field bridges the gap between nonreactive molecular simulations and quantum mechanical calculations and has been widely applied during the past two decades. However, its application to earth materials, especially those under high T-P conditions relevant to Earth's interior, is still limited due to the lack of available parameters. Here, we present the development and validation of a ReaxFF force field containing several of the most common elements in Earth's crust, i.e., Si/Al/O/H/Na/K. The force field was trained against a large data set obtained from density functional theory (DFT) calculations, including charges, bond/angle distortion curves, equation of states, ion migration energy profiles, and condensation reaction energies. Different coordination environments were considered in the training set. The fitting results showed that the current force field can well reproduce the DFT data (the Pearson correlation coefficient, Rp, is 0.95). We validated the force field on mineral-water interfaces, hydrous melts/supercritical geofluids, and bulk crystals. It was found that the current force field performed excellently in predicting the structural, thermodynamic, and transport properties of various systems (Rp = 0.95). Moreover, possible applications and future development have been discussed. The results obtained in this study suggest that the current force field holds good promise to model a wide range of processes and thus open opportunities to advance the application of ReaxFF in earth material modeling.

3.
Langmuir ; 39(46): 16494-16502, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37940415

RESUMO

Low-salinity flooding has been well recognized as a promising strategy to increase shale oil recovery, but the underlying mechanism remains unclarified, especially for complex nanopore networks filled with oil-brine fluids. In this study, the pressure-driven flow of an oil-brine fluid with varying salinities in shale nanopore-throat channels was first investigated based on molecular dynamics simulations. The critical pressure driving oil to intrude into a nanothroat filled with brine of varying salinities was determined. Simulation results indicate that the salinity of brine exhibits great effects on the movability of oil, and low salinity favors the increase of oil movability. Further analysis of the interactions between fluid and pore walls as well as the displacement pressures reveals dual effects of brine salinity on oil transportation in a nanopore-throat. On the one hand, hydrated cations anchoring onto throat walls enlarge the effective flow width in the throat before the hydration complexes reach the maximum. On the other hand, the interfacial tension between oil and brine increases with the brine salinity, which increases the capillary resistance and leads to a higher displacement pressure. These findings highlight the effects of brine salinity on oil movability in a nanopore-throat, which will promote the understanding of oil accumulation and dissipation in petroleum systems, as well as help to develop enhanced oil recovery.

4.
Inorg Chem ; 62(22): 8729-8738, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37222042

RESUMO

The migration of uranium (U) in the surficial environment has received considerable attention. Due to their high natural abundance and low solubility, autunite-group minerals play a key role in controlling the mobility of U. However, the formation mechanism for these minerals has yet to be understood. In this work, we took the uranyl arsenate dimer ([UO2(HAsO4)(H2AsO4)(H2O)]22-) as a model molecule and carried out a series of first-principles molecular dynamics (FPMD) simulations to explore the early stage of the formation of trögerite (UO2HAsO4·4H2O), a representative autunite-group mineral. By using the potential-of-mean-force (PMF) method and vertical energy gap method, the dissociation free energies and the acidity constants (pKa's) of the dimer were calculated. Our results show that the U in the dimer holds a 4-coordinate structure, which is consistent with the coordination environment observed in trögerite mineralogy, in contrast to the 5-coordinate U in the monomer. Furthermore, the dimerization is thermodynamically favorable in solution. The FPMD results also suggest that tetramerization and even polyreactions would occur at pH > 2, as observed experimentally. Additionally, it is found that trögerite and the dimer have very similar local structural parameters. These findings imply that the dimer could serve as an important link between the U-As complexes in solution and the autunite-type sheet of trögerite. Given the nearly identical physicochemical properties of arsenate and phosphate, our findings suggest that uranyl phosphate minerals with the autunite-type sheet may form in a similar manner. This study therefore fills a critical gap in atomic-scale knowledge of the formation of autunite-group minerals and provides a theoretical basis for regulating uranium mobilization in P/As-bearing tailing water.

5.
Environ Sci Technol ; 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36627109

RESUMO

Montmorillonite layer edge surfaces have pH-dependent properties, which arises from the acid-base reactivity of their surface functional groups. Edge surface acidity (with intrinsic reaction equilibrium constant, pKa) is a chemical property that is affected by crystal structure. While a cis-vacant structure predominates in natural montmorillonites, prior molecular-level studies assume a centrosymmetric trans-vacant configuration, which potentially leads to an incorrect prediction of montmorillonite acid-base surface properties. We computed intrinsic acidity constants of the surface sites of a montmorillonite layer with a cis-vacant structure using the first-principles molecular dynamics-based vertical energy gap method. We evaluated pKa values for both non-substituted and Mg-substituted layers on common edge surfaces (i.e., surfaces perpendicular to [010], [01̅0], [110], and [1̅1̅0] crystallographic directions). The functional groups ≡Si(OH), ≡Al(OH2)2/≡Al(OH)(OH2), and ≡SiO(OH)Al sites on surfaces perpendicular to [010] and [01̅0] and ≡Si(OH)U, ≡Si(OH)L, ≡Al(OH2), and ≡Al(OH2)2 on surfaces perpendicular to [110] and [1̅1̅0] determine the proton reactivity of non-substituted cis-vacant edge surfaces. Moreover, the structural OH sites on edge surfaces had extremely high pKa values, which do not show reactivity at a common pH. Meanwhile, Mg2+ substitution results in an increase in pKa values at local or adjacent sites, in which the effect is limited by the distance between the sites. A surface complexation model was built with predicted pKa values, which enabled us to predict surface properties as a function of pH and ionic strength. Edge surface charge of both trans- and cis-vacant models has little dependence on Mg2+ substitutions, but the dependence on the crystal plane orientation is strong. In particular, at pH below 7, edge surfaces are positively or negatively charged depending on their orientation. Implications of these findings on contaminant adsorption by smectites are discussed.

6.
Mol Psychiatry ; 26(8): 3956-3969, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-31772302

RESUMO

Social interaction and communication are evolutionary conserved behaviours that are developed in mammals to establish partner cognition. Deficit in sociability has been represented in human patients and animal models of neurodevelopmental disorders, which are connected with genetic variants of synaptic glutamate receptors and associated PDZ-binding proteins. However, it remains elusive how these key proteins are specialized in the cellular level for the initial social behaviour during postnatal developmental stage. Here we identify a hippocampal CA3 specifically expressed PDZ scaffold protein Lnx1 required for initial social behaviour. Through gene targeting we find that Lnx1 deficiency led to a hippocampal subregional disorder in neuronal activity and social memory impairments for partner discrimination observed in juvenile mice which also show cognitive defects in adult stage. We further demonstrate that Lnx1 deletion causes NMDA receptor (NMDAR) hypofunction and this is attributable to decreased GluN2B expression in PSD compartment and disruption of the Lnx1-NMDAR-EphB2 complex. Specific restoration of Lnx1 or EphB2 protein in the CA3 area of Lnx1-/- mice rescues the defective synaptic function and social memory. These findings thus reveal crucial roles of postsynaptic NMDAR multiprotein complex that regulates the formation of initial social memory during the adolescent period.


Assuntos
Região CA3 Hipocampal/fisiologia , Memória , Receptores de N-Metil-D-Aspartato , Comportamento Social , Ubiquitina-Proteína Ligases , Animais , Transtornos da Memória/genética , Camundongos , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Transdução de Sinais , Ubiquitina-Proteína Ligases/metabolismo
7.
Langmuir ; 38(11): 3380-3391, 2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35271289

RESUMO

The adsorption of cetyltrimethylammonium bromide (CTA+Br-) on sapphire-c surfaces was studied at pH 10 below the surfactants' critical micelle concentration. The evolution of interfacial potentials as a function of CTAB concentration was characterized by surface and zeta potential measurements and complemented by molecular dynamic (MD) simulations as well as by second-harmonic (SHG) and vibrational sum-frequency generation (SFG) spectroscopy. The changes in interfacial potentials suggest that the negative interfacial charge due to deprotonated surface aluminols groups is neutralized and can be even overcompensated by the presence of CTA+ cations at the interface. However, SFG intensities from strongly hydrogen-bonded interfacial water molecules as well as SHG intensities decrease with both increasing CTAB concentration and the magnitude of the surface potential. They do not suggest a charge reversal at the interface, while the change in zeta potential is actually consistent with an apparent charge inversion. This can be qualitatively explained by results from MD simulation, which reveal adsorbed CTA+ cations outside a first strongly bound hydration layer of water molecules, where they can locally distort the structural order and replace some of the interfacial water molecules adjacent to the first layer. This is proposed to be the origin for the significant loss in SFG and SHG intensities with increasing CTAB concentration. Moreover, we propose that CTA+ can act as a counterion and enhance the occurrence of deprotonated surface aluminols that is consistent with the decrease in surface potential.

8.
World J Urol ; 40(3): 795-800, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34851436

RESUMO

BACKGROUND: The management of complete staghorn stones remains a challenge for urologists, owing to the high stone burden, low stone free rate, and high rate of complications. Hence, we aimed to evaluate the outcomes of a technique involving combination laparoscopy and nephrolithotomy in the same session in patient with complete staghorn stones and poor performance status. METHODS: We retrospectively evaluated seven patients with complete staghorn stones who underwent a combination of laparoscopy and nephrolithotomy in the same session in our center between December 2016 and October 2019. The surgical technique was as follows. Through a four-port transperitoneal laparoscopic approach, the kidney was mobilized after complete dissection of the renal pedicle. The renal pelvis was then incised with a cold scalpel. A nephroscope was inserted into the renal collecting system through both a laparoscopic port and the renal pelvis incision. This method enabled visualization of and access to almost all calyces for clearing the stones from the affected kidneys in a hand-assisted manner which a hand was inserted in the peritoneal cavity. The outcome data included the stone-free rate, short-term and long-term complication rates, and stone recurrence rate. RESULTS: The stone free rate was 85.70% (6/7). No patients had sepsis or required blood transfusion perioperatively, and no major short-term complications occurred. After 24.00 (15.00, 48.00) months' follow-up, no patients had long-term complications, and only one patient had stone recurrence. CONCLUSION: The technique of combining laparoscopy and nephrolithotomy in the same session was an effective and safe treatment for patients with complete staghorn stones and poor performance status. The method was scarcely affected by the stone burden and morphology, had a satisfactory stone free rate, and resulted in no major complications, particularly life-threatening sepsis. It might be an option for such patients.


Assuntos
Cálculos Renais , Laparoscopia , Nefrostomia Percutânea , Cálculos Coraliformes , Seguimentos , Humanos , Cálculos Renais/cirurgia , Nefrostomia Percutânea/métodos , Estudos Retrospectivos , Cálculos Coraliformes/cirurgia , Resultado do Tratamento
9.
J Chem Phys ; 157(22): 224703, 2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36546785

RESUMO

Birnessite-type MnO2 plays key roles in scavenging trace elements in numerous natural environments and has also been regarded as a promising energy storage material. The interfacial properties of birnessite are highly pH-dependent due to the presence of various amphoteric groups on its edges, and, therefore, the acidity constants (pKa) of these groups are vital to the understanding of its electrochemical and environmental performances. However, an accurate acidity dataset for birnessite is absent yet. In this study, we employed first-principles molecular dynamics simulations and the vertical energy gap method to calculate the pKas of groups on the birnessite (010) edge. The interfacial hydration structure was characterized with a focus on the hydrogen bonding network. The obtained pKas suggest that MnOH2 is active while Mn2OH remains inert in a common pH range. Based on these results, the incorporation of transition metals on the edge surface was investigated by taking Ni2+ and Zn2+ as the model cations. The energy changes associated with the incorporation process of Ni2+ from the outer-sphere state indicate that incorporation on the edge surface is more feasible than that on the basal surface presumed in previous studies. Overall, the results obtained provide an atomic-scale insight into the acid-base chemistry of birnessite and form a physical basis for understanding the interfacial processes of birnessite.

10.
Respir Res ; 22(1): 194, 2021 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-34217280

RESUMO

BACKGROUND: We recently reported histone methyltransferase enhancer of zeste homolog 2 (EZH2) as a key epigenetic regulator that contributes to the dysfunction of innate immune responses to sepsis and subsequent lung injury by mediating the imbalance of macrophage polarization. However, the role of EZH2 in acute respiratory distress syndrome (ARDS)-associated fibrosis remains poorly understood. METHODS: In this study, we investigated the role and mechanisms of EZH2 in pulmonary fibrosis in a murine model of LPS-induced ARDS and in ex-vivo cultured alveolar macrophages (MH-S) and mouse lung epithelial cell line (MLE-12) by using 3-deazaneplanocin A (3-DZNeP) and EZH2 the small interfering (si) RNA. RESULTS: We found that treatment with 3-DZNeP significantly ameliorated the LPS-induced direct lung injury and fibroproliferation by blocking EMT through TGF-ß1/Smad signaling pathway and regulating shift of macrophage phenotypes. In the ex-vivo polarized alveolar macrophages cells, treatment with EZH2 siRNA or 3-DZNeP suppressed the M1 while promoted the M2 macrophage differentiation through modulating the STAT/SOCS signaling pathway and activating PPAR-γ. Moreover, we identified that blockade of EZH2 with 3-DZNeP suppressed the epithelial to mesenchymal transition (EMT) in co-cultured bronchoalveolar lavage fluid (BALF) and mouse lung epithelial cell line through down-regulation of TGF-ß1, TGF-ßR1, Smad2 while up-regulation of Smad7 expression. CONCLUSIONS: These results indicate that EZH2 is involved in the pathological process of ARDS-associated pulmonary fibrosis. Targeting EZH2 may be a potential therapeutic strategy to prevent and treat pulmonary fibrosis post ARDS.


Assuntos
Proteína Potenciadora do Homólogo 2 de Zeste/antagonistas & inibidores , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Macrófagos/metabolismo , Fenótipo , Fibrose Pulmonar/metabolismo , Síndrome do Desconforto Respiratório/metabolismo , Animais , Polaridade Celular/efeitos dos fármacos , Polaridade Celular/fisiologia , Técnicas de Cocultura , Lipopolissacarídeos/toxicidade , Macrófagos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/prevenção & controle , RNA Interferente Pequeno/administração & dosagem , Síndrome do Desconforto Respiratório/induzido quimicamente , Síndrome do Desconforto Respiratório/prevenção & controle
11.
Environ Sci Technol ; 55(23): 15921-15928, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34817156

RESUMO

Iron hydroxides are ubiquitous in soils and aquifers and have been adopted as adsorbents for As(V) removal. However, the complexation mechanisms of As(V) have not been well understood due to the lack of information on the reactive sites and acidities of iron hydroxides. In this work, we first calculated the acidity constants (pKas) of surface groups on lepidocrocite (010), (001), and (100) surfaces by using the first-principles molecular dynamics (FPMD)-based vertical energy gap method. Then, the desorption free energies of As(V) on goethite (110) and lepidocrocite (001) surfaces were calculated by using constrained FPMD simulations. The point of zero charges and reactive sites of individual surfaces were obtained based on the calculated pKas. The structures, thermodynamics, and pH dependence for As(V) complexation were derived by integrating the pKas and desorption free energies. The pKa data sets obtained are fundamental parameters that control the charging and adsorption behavior of iron oxyhydroxides and will be very useful in investigating the adsorption processes on these minerals. The pH-dependent complexation mechanisms of As(V) derived in this study would be helpful for the development of effective adsorbent materials and the prediction of the long-term behavior of As(V) in natural environments.


Assuntos
Compostos de Ferro , Simulação de Dinâmica Molecular , Adsorção , Compostos Férricos , Concentração de Íons de Hidrogênio , Hidróxidos , Ferro , Minerais
12.
Mediators Inflamm ; 2021: 7858746, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35002536

RESUMO

We recently reported the differential circRNA expression patterns of the pulmonary macrophages in sepsis-induced acute respiratory distress syndrome (ARDS) mice model by microarray analysis. However, their function and hidden molecular mechanism in regulation of macrophage activation and inflammation remain poorly understood. In this study, we found that circN4bp1was overexpressed in PBMC and monocytes, and its expression levels were correlated with a poor prognosis in sepsis induced ARDS patients induced by sepsis. Knockdown of circN4bp1 inhibited the lung injury and improved the long-time survival through blunting the M1 macrophage activation in cecal ligation and puncture- (CLP-) induced ARDS mice. Moreover, bioinformatics analysis predicated a circN4bp1/miR-138-5p ceRNA network, which was confirmed by luciferase reporter assay and RNA binding protein immunoprecipitation (RIP). CircN4bp1 affected macrophage differentiation by binding to miR-138-5p, thus regulating the expression of EZH2 in vivo and ex vivo. Lastly, the m6A level of circN4bp1was found to be elevated in ARDS mice; inhibition of m6A methyltransferase METTL3 blocked this response in vitro. Therefore, circN4bp1 can function as a miR-138-5p sponge for the modulation of macrophage polarization through regulation the expression of EZH2 and may serve as a potential target and/or prognostic marker for ARDS patients following sepsis.


Assuntos
MicroRNAs , Proteínas Nucleares/genética , RNA Circular , Proteínas de Ligação a RNA/genética , Síndrome do Desconforto Respiratório , Sepse , Animais , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Humanos , Leucócitos Mononucleares/metabolismo , Ativação de Macrófagos , Macrófagos/metabolismo , Metiltransferases/metabolismo , Camundongos , MicroRNAs/metabolismo , RNA Circular/genética , RNA Circular/metabolismo , Síndrome do Desconforto Respiratório/genética , Sepse/genética , Sepse/metabolismo
13.
Phys Chem Chem Phys ; 22(41): 23574-23585, 2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-33057504

RESUMO

CO2-Switchable surfactants are of great potential in a wide range of industrial applications related to their ability to stabilize and destabilize emulsions upon command. Molecular dynamics simulations have been performed to reveal the fundamental mechanism of the reversible emulsification/demulsification processes of a dodecane-saline system by a CO2-switchable surfactant that switches between active (i.e., N'-dodecyl-N,N-dimethylacetamidinium (DMAAH+)) and inactive (i.e., N'-dodecyl-N,N-dimethylacetamidine (DMAA)) forms. The density profiles indicate that DMAAH+ could increase the oil-water interfacial thickness to a greater extent compared to DMAA. DMAAH+ could sharply reduce the interfacial tension of the dodecane-saline system, while DMAA only exhibits a limited decrease, which is in accordance with the experimental observation that DMAAH+/DMAA can reversibly emulsify/demulsify alkane-water systems. Our simulations showed that both the number and lifetime of hydrogen bonds (HBs) between DMAA and water are almost equal to those between DMAAH+ and water. In DMAA, the N atom connecting with the alkyl tail acted as a HB acceptor, while the N atom attached by a proton in DMAAH+ acted as a HB donor. Furthermore, the HBs between DMAAH+ and HCO3- at the interfaces are relatively limited. Hence, it is deduced that the HBs are insufficient to achieve the CO2-switchability of DMAA/DMAAH+. The Lennard Jones and coulombic potentials between DMAA/DMAAH+ and other species show that the coulombic potentials between DMAAH+ and water or anions (i.e., Cl- and HCO3-) sharply decrease with the increase of DMAAH+ and are much lower than those in models with DMAA. The enhanced coulombic interactions between DMAAH+ and anions lead to a remarkable reduction in interfacial tension and the emulsification of the alkane-saline system. Therefore, coulombic interactions are of crucial importance to the reversible emulsification/demulsification processes regulated by CO2-switchable surfactants, namely DMAAH+/DMAA.

14.
Langmuir ; 35(46): 14818-14832, 2019 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-31660745

RESUMO

The value of crude oil accommodated in shale has been recognized and has attracted increasing attention from the academic and industrial society. The occurrence and mobility of crude oil in clay pores, therefore, become essential issues for evaluation and recovery of shale oil. The distribution, structure, and transport of the oil-brine mixture confined in a slit-shaped montmorillonite mesopore with different water amounts have been investigated using equilibrium molecular dynamics and nonequilibrium molecular dynamics (NEMD) simulations. A mimic model of crude oil, a mixture of 19 organic molecules, was employed, and thus the behavior of different organic molecules could be characterized in detail. A temperature of 410 K and a pressure of 300 atm corresponding to a buried depth of 3 km were employed. The simulations indicate that the water amount determines the distribution of crude oil. Water and metal ions prefer to cover on hydrophilic montmorillonite surfaces, while nonpolar hydrocarbons tend to be far away from clay surfaces. As the water amount is too low to completely cover the clay surfaces, some polar organic molecules will come into contact with the uncovered clay surface. Abundant organic acid molecules adsorb onto montmorillonite surfaces mainly through participating in the inner-sphere complexes of Na+ ions closely located at montmorillonite surfaces (i.e., Na+ cation bridge) and forming hydrogen bonds with water molecules in the vicinity. Carbazole molecules tend to aggregate together due to π-π stacking, while thioether molecules mix within alkane molecules and exhibit no characteristic distributions. The mobility of all oil components decreases with the decrease of the water amount, and the mobility of polar components (i.e., organic acid and carbazole) is relatively lower than that of nonpolar hydrocarbons. NEMD simulations clearly indicate that the transport velocity of crude oil markedly increases with the water amount under a specific pressure gradient. The brine covering on clay surfaces significantly weakens oil-clay interfacial interactions. Polar components, especially organic acid, exhibit relatively low transport velocity compared with nonpolar hydrocarbons. These findings highlight the understanding of physical-chemical behaviors of shale oil and provide atomistic information for technology development for enhancing oil recovery.

15.
Environ Sci Technol ; 53(23): 13704-13712, 2019 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-31697489

RESUMO

The nucleation and precipitation of heavy metal phyllosilicates can occur in the course of sorption onto clay edges, which will provide a long-term stabilization of heavy metal pollutants. However, a quantitative understanding of their reaction mechanisms is still lacking. Taking Ni2+ as the model cation, we characterized the atomic scale structures and thermodynamics of the early stage of nucleation by carrying out systematic first-principles molecular dynamics (FPMD) simulations, and the microscopic nucleation mechanisms were revealed. Two possible nucleation pathways were examined: a stepwise pathway (denoted as Path1) and a synchronous pathway (denoted as Path2). In Path1, Ni(OH)2 forms first and then transforms to Ni phyllosilicate via silicification; in Path2, Ni phyllosilicate forms on clay edges directly. The computed free energies of complexation and condensation reactions indicate that Path2 is much more thermodynamically favorable than Path1, meaning that, given that the solution contains dissolved Si initially, heavy metal phyllosilicates will nucleate on clay edges through Path2. By comparing these free energies with their counterpart values of the reaction in bulk solution, the effect of the surface has been uncovered. These findings provide valuable insights for an improved understanding of the stabilization and transformation of heavy metal elements in nature. The derived results form a quantitative basis for future studies on the heterogenous nucleation and precipitation of heavy metal cations.


Assuntos
Argila , Metais Pesados , Adsorção , Simulação de Dinâmica Molecular , Termodinâmica
16.
Cell Mol Life Sci ; 75(22): 4207-4222, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29938386

RESUMO

Axonal outgrowth and guidance require numerous extracellular cues and intracellular mediators that transduce signals in the growth cone to regulate cytoskeletal dynamics. However, the way in which cytoskeletal effectors respond to these signals remains elusive. Here, we demonstrate that Porf-2, a neuron-expressed RhoGTPase-activating protein, plays an essential role in the inhibition of initial axon growth by restricting the expansion of the growth cone in a cell-autonomous manner. Furthermore, the EphB1 receptor is identified as an upstream controller that binds and regulates Porf-2 specifically upon extracellular ephrin-B stimulation. The activated EphB forward signal deactivates Rac1 through the GAP domain of Porf-2, which inhibits growth cone formation and brakes axon growth. Our results therefore provide a novel GAP that regulates axon growth and braking sequentially through Eph receptor-independent and Eph receptor-dependent pathways.


Assuntos
Axônios/fisiologia , Proteínas Ativadoras de GTPase/metabolismo , Receptor EphB1/metabolismo , Transdução de Sinais , Animais , Axônios/metabolismo , Axônios/ultraestrutura , Células Cultivadas , Proteínas Ativadoras de GTPase/química , Proteínas Ativadoras de GTPase/fisiologia , Hipocampo/crescimento & desenvolvimento , Camundongos , Camundongos Knockout , Morfogênese , Domínios Proteicos
17.
Inorg Chem ; 57(10): 5801-5809, 2018 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-29741893

RESUMO

In this study, the structures and acidity constants (p Ka's) of uranyl arsenate complexes in solutions have been revealed by using the first principle molecular dynamics technique. The results show that uranyl and arsenate form stable complexes with the U/As ratios of 1:1 and 1:2, and the bidentate complexation between U and As is highly favored. Speciation-pH distributions are derived based on free energy and p Ka calculations, which indicate that for the 1:1 species, UO2(H2AsO4)(H2O)3+ is the major species at pH < 7, while UO2(HAsO4)(H2O)30 and UO2(AsO4)(H2O)3- dominate in acid-to-alkaline and extreme alkaline pH ranges. For the 1:2 species, UO2(H2AsO4)2(H2O)0 is dominant under acid-to-neutral pH conditions, while UO2(HAsO4)(H2AsO4)(H2O)-, UO2(HAsO4)(HAsO4)(H2O)2-, and UO2(AsO4)(HAsO4)(H2O)3- become the major forms in the pH range of 7.2-10.7, 10.7-12.1, and >12.1, respectively.

18.
Environ Sci Technol ; 52(15): 8501-8509, 2018 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-29949352

RESUMO

Systematic first-principles molecular dynamics (FPMD) simulations were carried out to study the structures, free energies, and acidity constants of UO22+ surface complexes on montmorillonite in order to elucidate the surface complexation mechanisms of the uranyl ion (UO22+) on clay mineral edges at the atomic scale. Four representative complexing sites were investigated, that is, ≡Al(OH)2 and ≡AlOHSiO on the (010) surface and ≡AlOHOa and ≡SiOOa on the (110) surface. The results show that uranyl ions form bidentate complexes on these sites. All calculated binding free energies for these complexes are very similar. These bidentate complexes can be hydrolyzed, and their corresponding derived p Ka values (around 5.0 and 9.0 for p Ka1 and p Ka2, respectively) indicate that UO2(OH)+ and UO2(OH)2 surface groups are the dominant surface species in the environmental pH range. The OH groups of UO2(OH)2 surface complexes can act as complexing sites for subsequent metals. Additional simulations showed that such multinuclear adsorption is feasible and can be important at high pH. Furthermore, FPMD simulation results served as input parameters for an electrostatic thermodynamic surface complexation model (SCM) that adequately reproduced adsorption data from the literature. Overall, this study provides an improved understanding of UO22+ complexation on clay mineral edge surfaces.


Assuntos
Bentonita , Urânio , Adsorção , Íons , Simulação de Dinâmica Molecular
19.
J Neurosci ; 36(39): 10151-62, 2016 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-27683910

RESUMO

UNLABELLED: The amygdala serves as emotional center to mediate innate fear behaviors that are reflected through neuronal responses to environmental aversive cues. However, the molecular mechanism underlying the initial neuron responses is poorly understood. In this study, we monitored the innate defensive responses to aversive stimuli of either elevated plus maze or predator odor in juvenile mice and found that glutamatergic neurons were activated in amygdala. Loss of EphB2, a receptor tyrosine kinase expressed in amygdala neurons, suppressed the reactions and led to defects in spine morphogenesis and fear behaviors. We further found a coupling of spinogenesis with these threat cues induced neuron activation in developing amygdala that was controlled by EphB2. A constitutively active form of EphB2 was sufficient to rescue the behavioral and morphological defects caused by ablation of ephrin-B3, a brain-enriched ligand to EphB2. These data suggest that kinase-dependent EphB2 intracellular signaling plays a major role for innate fear responses during the critical developing period, in which spinogenesis in amygdala glutamatergic neurons was involved. SIGNIFICANCE STATEMENT: Generation of innate fear responses to threat as an evolutionally conserved brain feature relies on development of functional neural circuit in amygdala, but the molecular mechanism remains largely unknown. We here identify that EphB2 receptor tyrosine kinase, which is specifically expressed in glutamatergic neurons, is required for the innate fear responses in the neonatal brain. We further reveal that EphB2 mediates coordination of spinogenesis and neuron activation in amygdala during the critical period for the innate fear. EphB2 catalytic activity plays a major role for the behavior upon EphB-ephrin-B3 binding and transnucleus neuronal connections. Our work thus indicates an essential synaptic molecular signaling within amygdala that controls synapse development and helps bring about innate fear emotions in the postnatal developing brain.


Assuntos
Tonsila do Cerebelo/fisiologia , Medo/fisiologia , Glutamatos/metabolismo , Instinto , Neurogênese/fisiologia , Neurônios/fisiologia , Receptor EphB2/metabolismo , Envelhecimento/fisiologia , Animais , Mecanismos de Defesa , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Transdução de Sinais/fisiologia
20.
Phys Chem Chem Phys ; 19(28): 18400-18406, 2017 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-28678224

RESUMO

We report a first principles molecular dynamics (FPMD) study of carboxylate complexation on clay surfaces. By taking acetate as a model carboxylate, we investigate its inner-sphere complexes adsorbed on clay edges (including (010) and (110) surfaces) and in interlayer space. Simulations show that acetate forms stable monodentate complexes on edge surfaces and a bidentate complex with Ca2+ in the interlayer region. The free energy calculations indicate that the complexation on edge surfaces is slightly more stable than in interlayer space. By integrating pKas and desorption free energies of Al coordinated water calculated previously (X. Liu, X. Lu, E. J. Meijer, R. Wang and H. Zhou, Geochim. Cosmochim. Acta, 2012, 81, 56-68; X. Liu, J. Cheng, M. Sprik, X. Lu and R. Wang, Geochim. Cosmochim. Acta, 2014, 140, 410-417), the pH dependence of acetate complexation has been revealed. It shows that acetate forms inner-sphere complexes on (110) in a very limited mildly acidic pH range while it can complex on (010) in the whole common pH range. The results presented in this study form a physical basis for understanding the geochemical processes involving clay-organics interactions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA