Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
Small ; : e2401839, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38804822

RESUMO

Co-free Li-rich Mn-based cathode materials are garnering great interest because of high capacity and low cost. However, their practical application is seriously hampered by the irreversible oxygen escape and the poor cycling stability. Herein, a reversible lattice adjustment strategy is proposed by integrating O vacancies and B doping. B incorporation increases TM─O (TM: transition metal) bonding orbitals whereas decreases the antibonding orbitals. Moreover, B doping and O vacancies synergistically increase the crystal orbital bond index values enhancing the overall covalent bonding strength, which makes TM─O octahedron more resistant to damage and enables the lattice to better accommodate the deformation and reaction without irreversible fracture. Furthermore, Mott-Hubbard splitting energy is decreased due to O vacancies, facilitating electron leaps, and enhancing the lattice reactivity and capacity. Such a reversible lattice, more amenable to deformation and forestalling fracturing, markedly improves the reversibility of lattice reactions and mitigates TM migration and the irreversible oxygen redox which enables the high cycling stability and high rate capability. The modified cathode demonstrates a specific capacity of 200 mAh g-1 at 1C, amazingly sustaining the capacity for 200 cycles without capacity degradation. This finding presents a promising avenue for solving the long-term cycling issue of Li-rich cathode.

2.
Opt Express ; 32(5): 8101-8121, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38439476

RESUMO

It is extremely challenging to rapidly and accurately extract target echo photon signals from massive photon point clouds with strong background noise without any prior geographic information. Herein, we propose a fast surface detection method realized by combining the improved density-dimension algorithm (DDA) and Kalman filtering (KF), termed the DDA-KF algorithm, for photon signals with a high background noise rate (BNR) to improve the extraction of surface photon signals from spacecraft platforms. The results showed that the algorithm exhibited good adaptability to strong background noise and terrain slope variations, and had real-time processing capabilities for massive photon point clouds in large-scale detection range without prior altitude information of target. Our research provides a practical technical solution for single-photon lidar applications in deep space navigation and can help improve the performance in environments characterized by strong background noise.

3.
Genomics ; 115(6): 110747, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37977331

RESUMO

Placopecten magellanicus (Gmelin, 1791), a deep-sea Atlantic scallop, holds significant commercial value as a benthic marine bivalve along the northwest Atlantic coast. Recognizing its economic importance, the need to reconstruct its genome assembly becomes apparent, fostering insights into natural resources and generic breeding potential. This study reports a high-quality chromosome-level genome of P. magellanicus, achieved through the integration of Illumina short read sequencing, PacBio HiFi sequencing, and Hi-C sequencing techniques. The resulting assembly spans 1778 Mb with a scaffold N50 of 86.71 Mb. An intriguing observation arises - the genome size of P. magellanicus surpasses that of its Pectinidae family peers by 1.80 to 2.46 times. Within this genome, 28,111 protein-coding genes were identified. Comparative genomic analysis involving five scallop species unveils the critical determinant of this expanded genome: the proliferation of repetitive sequences recently inserted, contributing to its enlarged size. The landscape of whole genome collinearity sheds light on the relationships among scallop species, enhancing our broader understanding of their genomic framework. This genome provides genomic resources for future molecular biology research on scallops and serves as a guide for the exploration of longevity-related genes in scallops.


Assuntos
Bivalves , Pectinidae , Animais , Pectinidae/genética , Bivalves/genética , Alimentos Marinhos , Tamanho do Genoma , Cromossomos/genética
4.
Angew Chem Int Ed Engl ; 63(16): e202400960, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38385630

RESUMO

Polymer-inorganic composite electrolytes (PICE) have attracted tremendous attention in all-solid-state lithium batteries (ASSLBs) due to facile processability. However, the poor Li+ conductivity at room temperature (RT) and interfacial instability severely hamper the practical application. Herein, we propose a concept of competitive coordination induction effects (CCIE) and reveal the essential correlation between the local coordination structure and the interfacial chemistry in PEO-based PICE. CCIE introduction greatly enhances the ionic conductivity and electrochemical performances of ASSLBs at 30 °C. Owing to the competitive coordination (Cs+…TFSI-…Li+, Cs+…C-O-C…Li+ and 2,4,6-TFA…Li…TFSI-) from the competitive cation (Cs+ from CsPF6) and molecule (2,4,6-TFA: 2,4,6-trifluoroaniline), a multimodal weak coordination environment of Li+ is constructed enabling a high efficient Li+ migration at 30 °C (Li+ conductivity: 6.25×10-4 S cm-1; tLi +=0.61). Since Cs+ tends to be enriched at the interface, TFSI- and PF6 - in situ form LiF-Li3N-Li2O-Li2S enriched solid electrolyte interface with electrostatic shielding effects. The assembled ASSLBs without adding interfacial wetting agent exhibit outstanding rate capability (LiFePO4: 147.44 mAh g-1@1 C and 107.41mAhg-1@2 C) and cycling stability at 30 °C (LiFePO4:94.65 %@200cycles@0.5 C; LiNi0.5Co0.2Mn0.3O2: 94.31 %@200 cycles@0.3 C). This work proposes a concept of CCIE and reveals its mechanism in designing PICE with high ionic conductivity as well as high interfacial compatibility at near RT for high-performance ASSLBs.

5.
Angew Chem Int Ed Engl ; : e202404330, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38878199

RESUMO

Enhancing the energy density of layered oxide cathode materials is of great significance for realizing high-performance sodium-ion batteries and promoting their commercial application. Lattice oxygen redox at high voltage usually enables a high capacity and energy density. But the structural degradation, severe voltage decay, and the resultant poor cycling performance caused by irreversible oxygen release seriously restrict the practical application. Herein we introduce a novel fence-type superstructure (2a × 3a type supercell) into O3-type layered cathode material Na0.9Li0.1Ni0.3Mn0.3Ti0.3O2 and achieve a stable cycling performance at a high voltage of 4.4 V. The fence-type superstructure effectively inhibits the formation of the vacancy clusters resulting from out-of-plane Li migration and in-plane transition metal migration at high voltage due to the wide d-spacing, thereby significantly reducing the irreversible release of lattice oxygen and greatly stabilizing the crystal structure. The cathode exhibits a high energy density of 545 Wh kg-1, a high rate capability (112.8 mAh g-1 at 5C) and a high cycling stability (85.8%@200 cycles with a high initial capacity of 148.6 mAh g-1 at 1C) accompanied by negligible voltage attenuation (98.5%@200 cycles). This strategy provides a distinct spacing effect of superstructure to design stable high-voltage layered cathode materials for Na-ion batteries.

6.
Angew Chem Int Ed Engl ; 63(1): e202315856, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-37985233

RESUMO

Solid-state batteries (SSBs) based on Li-rich Mn-based oxide (LRMO) cathodes attract much attention because of their high energy density as well as high safety. But their development was seriously hindered by the interfacial instability and inferior electrochemical performance. Herein, we design a three-dimensional foam-structured GaN-Li composite anode and successfully construct a high-performance SSB based on Co-free Li1.2 Ni0.2 Mn0.6 O2 cathode and Li6.5 La3 Zr1.5 Ta0.5 O12 (LLZTO) solid electrolyte. The interfacial resistance is considerably reduced to only 1.53â€…Ω cm2 and the assembled Li symmetric cell is stably cycled more than 10,000 h at 0.1-0.2 mA cm-2 . The full battery shows a high initial capacity of 245 mAh g-1 at 0.1 C and does not show any capacity degradation after 200 cycles at 0.2 C (≈100 %). The voltage decay is well suppressed and it is significantly decreased from 2.96 mV/cycle to only 0.66 mV/cycle. The SSB also shows a very high rate capability (≈170 mAh g-1 at 1 C) comparable to a liquid electrolyte-based battery. Moreover, the oxygen anion redox (OAR) reversibility of LRMO in SSB is much higher than that in liquid electrolyte-based cells. This study offers a distinct strategy for constructing high-performance LRMO-based SSBs and sheds light on the development and application of high-energy density SSBs.

7.
J Am Chem Soc ; 145(18): 10208-10219, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37098172

RESUMO

High-voltage LiCoO2 (LCO) attracts great interest because of its large specific capacity, but it suffers from oxygen release, structural degradation, and quick capacity drop. These daunting issues root from the inferior thermodynamics and kinetics of the triggered oxygen anion redox (OAR) at high voltages. Herein, a tuned redox mechanism with almost only Co redox is demonstrated by atomically engineered high-spin LCO. The high-spin Co network reduces the Co/O band overlap, eliminates the adverse phase transition of O3 → H1-3, delays the exceeding of the O 2p band over the Fermi level, and suppresses excessive O → Co charge transfer at high voltages. This function intrinsically promotes Co redox and restrains O redox, fundamentally addressing the issues of O2 release and coupled detrimental Co reduction. Moreover, the chemomechanical heterogeneity caused by different kinetics of Co/O redox centers and the inferior rate performance limited by slow O redox kinetics is simultaneously improved owing to the suppression of slow OAR and the excitation of fast Co redox. The modulated LCO delivers ultrahigh rate capacities of 216 mAh g-1 (1C) and 195 mAh g-1(5C), as well as high capacity retentions of 90.4% (@100 cycles) and 86.9% (@500 cycles). This work sheds new light on the design for a wide range of O redox cathodes.

8.
Small ; 19(10): e2204559, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36581502

RESUMO

The critical challenge for Li-O2 batteries lies in the large charge overpotential, leading to undesirable side reactions and inferior cycle stability. Single-atom catalysts have shown promising prospects in expediting the kinetics of oxygen evolution reaction (OER) for Li-O2 batteries. However, a present practical drawback is the limited understanding of the correlation between the unique atomic structures and the OER mechanism. Herein, a template-assisted strategy is reported to synthesize atomically dispersed Pd anchored on N-doped carbon spheres as cathode catalysts. Benefiting from the well-defined Pd-N4 moiety, the morphology and distribution of Li2 O2 products are distinctly regulated with optimized decomposition reversibility. Theoretical simulations reveal that the unique configuration of Pd-N4 will contribute to the electron transfer from Pd atoms to the adjacent N atoms, which turns the originally electroneutral Pd into positively charged and downshifts the d-band center and therefore weakens its adsorption energy with the intermediates. The Li-O2 batteries with Pd SAs/NC cathode achieve a charge overpotential of only 0.24 V and sustainable low-overpotential cycling stability (500 mA g-1 ), and can retain a low charge voltage to a very high capacity of 10 000 mAh g-1 . This work provides some insights into designing efficient single-atom catalysts for stable low-overpotential Li-O2 batteries.

9.
Small ; 19(33): e2301391, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37086134

RESUMO

Lithium-oxygen (Li-O2 ) batteries have received extensive attention owing to ultrahigh theoretical energy density. Compared to typical discharge product Li2 O2 , LiOH has attracted much attention for its better chemical and electrochemical stability. Large-scale applications of Li-O2 batteries with LiOH chemistry are hampered by the serious internal shuttling of the water additives with the desired 4e- electrochemical reactions. Here, a metal organic framework-derived "water-trapping" single-atom-Co-N4 /graphene catalyst (Co-SA-rGO) is provided that successfully mitigates the water shuttling and enables the direct 4e- catalytic reaction of LiOH in the aprotic Li-O2 battery. The Co-N4 center is more active toward proton-coupled electron transfer, benefiting - direction 4e- formation of LiOH. 3D interlinked networks also provide large surface area and mesoporous structures to trap ≈12 wt% H2 O molecules and offer rapid tunnels for O2 diffusion and Li+ transportation. With these unique features, the Co-SA-rGO based Li-O2 battery delivers a high discharge platform of 2.83 V and a large discharge capacity of 12 760.8 mAh g-1 . Also, the battery can withstand corrosion in the air and maintain a stable discharge platform for 220 cycles. This work points out the direction of enhanced electron/proton transfer for the single-atom catalyst design in Li-O2 batteries.

10.
New Phytol ; 238(1): 155-168, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36527238

RESUMO

In angiosperm, two immotile sperm cells are delivered to the female gametes for fertilization by a pollen tube, which perceives guidance cues from ovules at least at two critical sites, micropyle for short-distance guidance and funiculus for comparably longer distance guidance. Compared with the great progress in understanding pollen tube micropylar guidance, little is known about the signaling for funicular guidance. Here, we show that funiculus plays an important role in pollen tube guidance and report that female gametophyte (FG) plays a critical role in funicular guidance by analysis of a 3-dehydroquinate synthase (DHQS) mutant. Loss function of DHQS in FG interrupts pollen tube funicular guidance, suggesting that the guiding signal is generated from FG. We show the evidence that the capacity of funicular guidance is established during FG functional specification after the establishment of cell identity. Specific expression of DHQS in the synergid cells, central cells, or egg cells can rescue funicular guidance defect in dhqs/+, indicating all the female germ unit cells are involved in the funicular guidance. The finding reveals that the attracting signal of pollen tube funicular guidance was generated at a site and stage manner and provides novel clue to locate and search for the signal.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Tubo Polínico , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Óvulo Vegetal/metabolismo , Tubo Polínico/metabolismo , Polinização/fisiologia , Sementes/metabolismo
11.
Inorg Chem ; 62(24): 9314-9323, 2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37285310

RESUMO

P2-type Na0.67Mn0.5Fe0.5O2 (MF) has attracted great interest as a promising cathode material for sodium-ion batteries (SIBs) due to its high specific capacity and low cost. However, its poor cyclic stability and rate performance hinder its practical applications, which is largely related to lattice oxygen instability. Here, we propose to coat the cathode of SIBs with Li2ZrO3, which realizes the "three-in-one" modification of Li2ZrO3 coating and Li+, Zr4+ co-doping. The synergy of Li2ZrO3 coating and Li+/Zr4+ doping improves both the cycle stability and rate performance, and the underlying modification mechanism is revealed by a series of characterization methods. The doping of Zr4+ increases the interlayer spacing of MF, reduces the diffusion barrier of Na+, and reduces the ratio of Mn3+/Mn4+, thus inhibiting the Jahn-Teller effect. The Li2ZrO3 coating layer inhibits the side reaction between the cathode and the electrolyte. The synergy of Li2ZrO3 coating and Li+, Zr4+ co-doping enhances the stability of lattice oxygen and the reversibility of anionic redox, which improves the cycle stability and rate performance. This study provides some insights into stabilizing the lattice oxygen in layered oxide cathodes for high-performance SIBs.

12.
Mol Ther ; 30(12): 3694-3713, 2022 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-35869629

RESUMO

The pathogenesis of acute kidney injury (AKI) is still not fully understood, and effective interventions are lacking. Here, we explored whether methyltransferase 3 (METTL3) was involved in the progression of AKI via regulation of cell death. We reported that PT(proximal tubule)-METTL3-knockout (KO) noticeably suppressed ischemic-induced AKI via inhibition of renal cell apoptosis. Furthermore, we also found that the expression of mmu-long non-coding RNA (lncRNA) 121686 was upregulated in antimycin-treated Boston University mouse proximal tubule (BUMPT) cells and a mouse ischemia-reperfusion (I/R)-induced AKI model. Functionally, mmu-lncRNA 121686 could promote I/R-induced mouse renal cell apoptosis. Mechanistically, mmu-lncRNA 121686 acted as a competing endogenous RNA (ceRNA) to prevent microRNA miR-328-5p-mediated downregulation of high-temperature requirement factor A 3 (Htra3). PT-mmu-lncRNA 121686-KO mice significantly ameliorated the ischemic-induced AKI via the miR-328-5p/HtrA3 axis. In addition, hsa-lncRNA 520657, homologous with lncRNA 121686, sponged miR-328-5p and upregulated Htra3 to promote I/R-induced human renal cell apoptosis. Interestingly, we found that mmu-lncRNA 121686/hsa-lncRNA 520657 upregulation were dependent on METTL3 via N6-methyladenosine (m6A) modification. The mmu-lncRNA 121686/miR-328-5p or hsa-lncRNA 520657/miR-328-5p /HtrA3 axis was induced in vitro by METTL3 overexpression; in contrast, this effect was attenuated by METTL3 small interfering RNA (siRNA). Furthermore, we found that PT-METTL3-KO or METTL3 siRNA significantly suppressed ischemic, septic, and vancomycin-induced AKI via downregulation of the mmu-lncRNA 121686/miR-328-5p/HtrA3 axis. Taken together, our data indicate that the METTL3/mmu-lncRNA 121686/hsa-lncRNA 520657/miR-328-5p/HtrA3 axis potentially acts as a therapeutic target for AKI.


Assuntos
Injúria Renal Aguda , MicroRNAs , RNA Longo não Codificante , Animais , Humanos , Camundongos , Injúria Renal Aguda/genética , Metiltransferases , MicroRNAs/genética , RNA Longo não Codificante/genética , Serina Endopeptidases
13.
Angew Chem Int Ed Engl ; 62(22): e202302655, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-36988084

RESUMO

Sulfide electrolytes with high ionic conductivity hold great promise for all-solid-state lithium batteries. However, the parasitic redox reactions between sulfide electrolyte and Li metal result in interfacial instability and rapid decline of the battery performance. Herein, a redox-resistible Li6 PS5 Cl (LPSC) electrolyte is created by regulating the electron distribution in LPSC with Mg and F incorporation. The introduction of Mg triggers the electron agglomeration around S atom, inhibiting the electron acceptance from Li, and F generates the self-limiting interface, which hinders the redox reactions between LPSC and Li metal. This redox-resistible Li6 PS5 Cl-MgF2 electrolyte therefore presents a high critical current density (2.3 times that of pristine electrolyte). The LiCoO2 /Li6 PS5 Cl-MgF2 /Li cell shows an outstanding cycling stability (93.3 %@100 cycles at 0.2 C). This study highlights the electronic structure modulation to address redox issues on sulfide-based lithium batteries.

14.
Small ; 18(18): e2201014, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35373917

RESUMO

High-capacity Li-rich Mn-based oxide cathodes show a great potential in next generation Li-ion batteries but suffer from some critical issues, such as, lattice oxygen escape, irreversible transition metal (TM) cation migration, and voltage decay. Herein, a comprehensive structural modulation in the bulk and surface of Li-rich cathodes is proposed through simultaneously introducing oxygen vacancies and P doping to mitigate these issues, and the improvement mechanism is revealed. First, oxygen vacancies and P doping elongates OO distance, which lowers the energy barrier and enhances the reversible cation migration. Second, reversible cation migration elevates the discharge voltage, inhibits voltage decay and lattice oxygen escape by increasing the Li vacancy-TM antisite at charge, and decreasing the trapped cations at discharge. Third, oxygen vacancies vary the lattice arrangement on the surface from a layered lattice to a spinel phase, which deactivates oxygen redox and restrains oxygen gas (O2 ) escape. Fourth, P doping enhances the covalency between cations and anions and elevates lattice stability in bulk. The modulated Li-rich cathode exhibits a high-rate capability, a good cycling stability, a restrained voltage decay, and an elevated working voltage. This study presents insights into regulating oxygen redox by facilitating reversible cation migration and suppressing O2 escape.

15.
Phys Chem Chem Phys ; 24(30): 17920-17940, 2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35866683

RESUMO

Li-air batteries are considered to be one of the most promising energy storage devices due to their high energy density and large specific capacity. But the high overpotential, the sluggish oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) kinetics, and the poor cycling stability critically restrict their practical applications. To overcome these problems, various catalysts and electrolyte mediators have been used and studied. However, for practical application, these catalysts still have some challenges and scientific problems that need to be solved. Specifically, the performance of lithium-air batteries faces three major problems of capacity, overpotential, and cycle life that need to be solved. Solid-phase catalysts and liquid-phase redox mediators have their own advantages and disadvantages in the performance and reaction mechanism of lithium-air batteries. This review comprehensively analyzes and summarizes the catalytic materials and electrolyte additives of different systems and discusses in depth the corresponding reaction mechanism and performance (including technical characteristics and application difficulty). Finally, according to the characteristics of catalysts and practical application difficulties, the development direction of lithium-air batteries is proposed. Li-air batteries need to exploit the advantages of catalysts and redox mediators in terms of stability and overpotential to improve the electrochemical performance of the battery. In the future, anode protection and air purification systems will be combined to achieve large-scale, long-cycle applications of lithium-air batteries.

16.
Angew Chem Int Ed Engl ; 61(16): e202115552, 2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35112438

RESUMO

Improving the reversibility of oxygen redox is quite significant for layered oxides cathodes in sodium-ion batteries. Herein, we for the first time simultaneously tune bulk O2 and nonbonding oxygen state for reversible oxygen redox chemistry in P2-Na0.67 Mn0.5 Fe0.5 O2 through a synergy of Li2 TiO3 coating and Li/Ti co-doping. O2- is oxidized to molecular O2 and peroxide (O2 )n- (n<2) during charging. Molecular O2 derived from transition metal (TM) migration is related to the superstructure ordering induced by Li doping. The synergy mechanism of Li2 TiO3 coating and Li/Ti co-doping on the two O-redox modes is revealed. Firstly, Li2 TiO3 coating restrains the surface O2 and inhibits O2 loss. Secondly, nonbonding Li-O-Na enhances the reversibility of O2- →(O2 )n- . Thirdly, Ti doping strengthens the TM-O bond which fixes lattice oxygen. The cationic redox reversibility is also enhanced by Li/Ti co-doping. The proposed insights into the oxygen redox reversibility are insightful for other oxide cathodes.

17.
FASEB J ; 34(4): 5178-5192, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32061112

RESUMO

Hepatic fibrosis occurs during chronic hepatic injury and is involved in hepatic stellate cells (HSCs) activated by several types of immune cells. Among the immune cells, hepatic macrophages and their crosstalk with HSCs play a vital role in all stages of hepatic fibrosis. Exosomes, which are 30-150 nm lipid bilayer vehicles, can transfer specific lipid, nucleic acids, proteins, and other bioactive molecules. Exosomes can act as good communication between macrophages and HSCs. Herein, we investigated the role of exosomes between THP-1 macrophage and HSCs in the progression of liver fibrosis. Exosomes originating from lipopolysaccharide (LPS)-treated THP-1 macrophages promoted HSCs proliferation and induced the increased expression of fibrotic genes. LPS could alter the miRNA profile in exosomes secreted from THP-1 macrophages. The changed miR-103-3p in exosomes could promote HSCs proliferation and activation by targeting Krüppel-like factor 4 (KLF4) and it plays important roles in the crosstalk between THP-1 macrophages and HSCs during the progression of liver fibrosis. Moreover, miR-103-3p in serum exosomes from liver fibrosis patients could be a biomarker for liver fibrosis. Therefore, exosomes may have important roles in the crosstalk between macrophage and HSCs in the progression of chronic liver diseases.


Assuntos
Exossomos/genética , Células Estreladas do Fígado/patologia , Lipopolissacarídeos/efeitos adversos , Cirrose Hepática/patologia , Macrófagos/patologia , MicroRNAs/genética , Biomarcadores/sangue , Estudos de Casos e Controles , Células Estreladas do Fígado/efeitos dos fármacos , Células Estreladas do Fígado/metabolismo , Humanos , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/genética , Cirrose Hepática/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , MicroRNAs/sangue , Transdução de Sinais
18.
Inorg Chem ; 60(7): 5252-5263, 2021 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-33724012

RESUMO

Inexpensive and efficient electrocatalysts are crucial for the development and practical application of energy conversion and storage technologies. Layered-double-hydroxide (LDH) materials have attracted much attention due to the special layered structure, but their electrocatalytic activity and stability are still limited. Herein, we propose to tune Co2+ occupancy and coordination in cobalt-based LDH nanosheets via Fe3+ doping for efficient and stable electrocatalysis for oxygen evolution reaction (OER). It is found that Fe doping regulates the occupancy and coordination of Co2+ in CoO4 tetrahedrons and CoO6 octahedrons of Co-LDHs. Through density functional theory calculation, we also clarified that Fe3+ not only modulated the Co2+ coordination but also functioned as an added catalytic active site. LDH nanosheets with a Co/Fe ratio of 5:1 show a low OER overpotential, much better than the commercial IrO2, owing to the modulation of Fe3+ doping on the crystal and electronic structures. After appropriate incorporation of Fe3+, the almost inactive octahedral coordinated Co2+ is significantly activated with a partial deletion of tetrahedral coordinated Co2+, which greatly boosts the overall electrocatalytic activity. This study offers some new insights into tuning the crystal and electronic structures of LDHs by lattice doping to achieve high-efficiency electrocatalysis for OER.

19.
Angew Chem Int Ed Engl ; 60(52): 27102-27112, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34668282

RESUMO

High-voltage LiCoO2 delivers a high capacity but sharp fading is a critical issue, and the capacity decay mechanism is also poorly understood. Herein, we clarify that the escape of surface oxygen and Li-insulator Co3 O4 formation are the main causes for the capacity fading of 4.6 V LiCoO2 . We propose the inhibition of the oxygen escape for achieving stable 4.6 V LiCoO2 by tailoring the Co3d and O2p band center and enlarging their band gap with MgF2 doping. This enhances the ionicity of the Co-O bond and the redox activity of Co and improves cation migration reversibility. The inhibition of oxygen escape suppresses the formation of Li-insulator Co3 O4 and maintains the surface structure integrity. Mg acts as a pillar, providing a stable and enlarged channel for fast Li+ intercalation/extraction. The modulated LiCoO2 shows almost zero strain and achieves a record capacity retention at 4.6 V: 92 % after 100 cycles at 1C and 86.4 % after 1000 cycles at 5C.

20.
Inorg Chem ; 58(8): 4989-4996, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-30788960

RESUMO

Li-O2 battery attracts great interest because of the high energy density. But the poor kinetics of the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) have blocked the practical application. Designing the efficient bifunctional cathode catalysts is of great importance for the Li-O2 battery. Tuning the electronic and surface structure of the catalysts plays an important role. Herein, we propose to enhance the catalytic performance of Co3O4 nanosheets for rechargable Li-O2 batteries by hydrazine hydrate-induced oxygen vacancy formation. The hydrazine hydrate reduction not only introduces oxygen vacancies into Co3O4 nanosheets and modulates the electronic structure but also roughens the surface, which all contribute to the enhancement of ORR and OER activity, especially the activity and stability for OER. Li-O2 cells catalyzed by the oxygen defects-enriched Co3O4 ultrathin nanosheets exhibit much better electrochemical performances in terms of the high initial capacity (∼11 000 mAh g-1), the lower overpotential (∼1.1 V), and the longer cycle life (150 cycles@200 mA g-1). This can be largely attributed to the synergy of the enriched oxygen vacancies and the roughened surface of Co3O4 nanosheets, which not only improves the electron and Li+ conductivity but also provides more active sites and reaction spots. The proposed facile strategy may also be applied to modify other oxides based catalysts for Li-O2 batteries or other fields.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA