Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 157
Filtrar
1.
Opt Express ; 32(8): 13384-13395, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38859310

RESUMO

We introduce a unique dual-function detector with an asymmetric light illumination based on the black silicon co-hyperdoped with sulfur and nitrogen for light and gas detection, and the properties in NO2 gas sensing and photoelectric detection are studied under various light and gas environments, respectively. Enhanced performance of the device under certain light and gas conditions is observed. When illuminated at the optimal wavelength, the gas sensors' responsivity to NO2 can be enhanced by approximately 5 to 200 times over 730 nm illumination, respectively. The photodetectors' photoresponsivity increases 15 to 200 times in a 300 ppm NO2 gas environment compared to air. Such mutual enhancement achieved through the clever combination of light and gas implies a novel approach to improve the performance of the black silicon detectors in both gas sensing and photoelectric detection.

2.
Insect Mol Biol ; 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39314071

RESUMO

The Homeotic complex (Hox) genes play a crucial role in determining segment identity and appendage morphology in bilaterian animals along the antero-posterior axis. Recent studies have expanded to agricultural pests such as fall armyworm (FAW), scientifically known as Spodoptera frugiperda J. E. Smith (Lepidoptera: Noctuidae), which significantly threatens global agricultural productivity. However, the specific role of the hox gene Sfabd-B in FAW remains unexplored. This research investigates the spatial and temporal expression patterns of Sfabd-B in various tissues at different developmental stages using quantitative real-time polymerase chain reaction (qRT-PCR). Additionally, we explored the potential function of the Sfabd-B gene located in the FAW genome using CRISPR/Cas9 technology. The larval mutant phenotypes can be classified into three subgroups as compared with wild-type individuals, that is, an excess of pedis in the posterior abdomen, deficient pedis due to segmental fusion and deviations in the posterior abdominal segments. Importantly, significant differences in mutant phenotypes between male and female individuals were also evident during the pupal and adult phases. Notably, both the decapentaplegic (dpp) and cuticular protein 12 (cp 12) genes displayed a substantial marked decrease in expression levels in the copulatory organ of male mutants and the ovipositor of female mutants compared with the wild type. These findings highlight the importance of Sfabd-B in genital tract patterning, providing a potential target for improving genetic control.

3.
Neurochem Res ; 49(4): 815-833, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38170383

RESUMO

Ischemic stroke is a common neurological disease. Currently, there are no Food and Drug Administration-approved drugs that can maximize the improvement in ischemic stroke-induced nerve damage. Hence, treating ischemic stroke remains a clinical challenge. Ferroptosis has been increasingly studied in recent years, and it is closely related to the pathophysiological process of ischemic stroke. Iron overload, reactive oxygen species accumulation, lipid peroxidation, and glutamate accumulation associated with ferroptosis are all present in ischemic stroke. This article focuses on describing the relationship between ferroptosis and ischemic stroke and summarizes the relevant substances that ameliorate ischemic stroke-induced neurological damage by inhibiting ferroptosis. Finally, the problems in the treatment of ischemic stroke targeting ferroptosis are discussed, hoping to provide a new direction for its treatment.


Assuntos
Ferroptose , Sobrecarga de Ferro , AVC Isquêmico , Humanos , Ácido Glutâmico , Peroxidação de Lipídeos , Espécies Reativas de Oxigênio
4.
Mol Cell Biochem ; 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38943027

RESUMO

Acute kidney injury (AKI) is one of the most common and severe clinical renal syndromes with high morbidity and mortality. Ferroptosis is a form of programmed cell death (PCD), is characterized by iron overload, reactive oxygen species accumulation, and lipid peroxidation. As ferroptosis has been increasingly studied in recent years, it is closely associated with the pathophysiological process of AKI and provides a target for the treatment of AKI. This review offers a comprehensive overview of the regulatory mechanisms of ferroptosis, summarizes its role in various AKI models, and explores its interaction with other forms of cell death, it also presents research on ferroptosis in AKI progression to other diseases. Additionally, the review highlights methods for detecting and assessing AKI through the lens of ferroptosis and describes potential inhibitors of ferroptosis for AKI treatment. Finally, the review presents a perspective on the future of clinical AKI treatment, aiming to stimulate further research on ferroptosis in AKI.

5.
Pestic Biochem Physiol ; 200: 105842, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38582604

RESUMO

Chemical sensing systems are vital in the growth and development of insects. Orius sauteri (Poppius) (Hemiptera: Anthocoridae) is an important natural enemy of many pests. The molecular mechanism of odorant binding proteins (OBPs) binding with common insecticides is still unknow in O. sauteri. In this study, we expressed in vitro OsauOBP8 and conducted fluorescence competition binding assay to investigate the function of OsauOBP8 to insecticides. The results showed that OsauOBP8 could bind with four common insecticides (phoxim, fenitrothion, chlorpyrifos, deltamethrin). Subsequently, we used molecular docking to predict and obtained candidate six amino acid residues (K4, K6, K13, R31, K49, K55) and then mutated. The result showed that three key residues (K4, K6, R31) play important role in OsauOBP8 bound to insecticides. Our study identified the key binding sites of OsauOBP8 to insecticides and help to better understand the molecular mechanism of OBPs to insecticides in O. sauteri.


Assuntos
Heterópteros , Inseticidas , Receptores Odorantes , Animais , Simulação de Acoplamento Molecular , Receptores Odorantes/genética
6.
Chem Biodivers ; : e202401034, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39109873

RESUMO

The main protease (Mpro) of Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV-2) represents a promising target for antiviral drugs aimed at combating COVID-19. Consequently, the development of Mpro inhibitor is an ideal strategy for combating the virus. In this study, we identified twenty-two dithiocarbamates (1 a-h), dithiocarbamate-Cu(II) complexes (2 a-hCu) and disulfide derivatives (2 a-e, 2 i) as potent inhibitors of Mpro, with IC50 value range of 0.09-0.72, 0.9-24.7, and 15.1-111 µM, respectively, through FRET screening. The enzyme kinetics, inhibition mode, jump dilution, and DTT assay revealed that 1 g may be a partial reversible inhibitor, while 2 d and 2 f-Cu are the irreversible and dose- and time-dependent inhibitors, potentially covalently binding to the target. Binding of 2 d, 2 f-Cu, and 1 g to Mpro was found to decrease the stability of the protein. Additionally, DTT assays and thermal shift assays indicated that 2 f-Cu and 2 d are the nonspecific and promiscuous cysteine protease inhibitor. ICP-MS implied that the inhibitory activity of 2 f-Cu may stem from the uptake of Cu(II) by the enzyme. Cytotoxicity assays demonstrated that 2 d and 1 g exhibit low cytotoxicity, whereas 2 f-Cu show certain cytotoxicity in L929 cells. Overall, this work presents two promising scaffolds for the development of Mpro inhibitors to combat COVID-19.

7.
J Environ Manage ; 361: 121268, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38820787

RESUMO

Carbon dioxide (CO2) production and emissions from inland waters play considerable roles in global atmospheric CO2 sources, while there are still uncertainties regarding notable nutrient inputs and anthropogenic activities. Urban inland waters, with frequently anthropogenic modifications and severely nitrogen loadings, were hotspots for CO2 emissions. Here, we investigated the spatiotemporal patterns of partial pressure of CO2 (pCO2) and CO2 fluxes (FCO2) in typical urban inland waters in Tianjin, China. Our observation indicated that pCO2 values were oversaturated in highly polluted waters, particularly in sewage rivers and urban rivers, exhibiting approximately 9 times higher than the atmosphere equilibrium concentration during sampling campaigns. Obviously, the spatiotemporal distributions of pCO2 and FCO2 emphasized that the water environmental conditions and anthropogenic activities jointly adjusted primary productivity and biological respiration of inland waters. Meanwhile, statistically positive correlations between pCO2/FCO2 and NH4+-N/NO3--N (p < 0.05) suggested that nitrogen biogeochemical processes, especially the nitrification, played a dominant role in CO2 emissions attributing to the water acidification that stimulated CO2 production and emissions. Except for slight CO2 sinks in waters with low organic contents, the total CO2 emissions from the urban surface waters of Tianjin were remarkable (286.8 Gg yr-1). The results emphasized that the reductions of nitrogen loadings, sewage draining waters, and agricultural pollution could alleviate CO2 emissions from urban inland waters.


Assuntos
Dióxido de Carbono , Nitrogênio , Dióxido de Carbono/análise , Nitrogênio/análise , Monitoramento Ambiental , China , Rios/química
8.
Small ; 19(48): e2302970, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37594726

RESUMO

Regulating the electronic structure of active sites and monitoring the evolution of the active component is essential to improve the intrinsic activity of catalysts for electrochemical reactions. Herein, a highly efficient pre-electrocatalyst of iron diselenide with rich Se vacancies achieved by phosphorus doping (denoted as P-FeSe2 ) for oxygen evolution reaction (OER) is reported. Systematically experimental and theoretical results show that the formed Se vacancies with phosphorus doping can synergistically modulate the electronic structure of FeSe2 and facilitate OER kinetics with the resulting enhanced electrical conductivity and electrochemical surface area. Importantly, the in situ formed FeOOH species on the surface of the P-FeSe2 nanorods (denoted as P-FeOOH(Se)) during the OER process acts as an active component to efficiently catalyze OER and exhibits a low overpotential of 217 mV to reach 10 mA cm-2 with good durability. Promisingly, an alkaline electrolyzer assembled with P-FeOOH(Se) and Pt/C electrodes requires an ultra-low cell voltage of 1.50 V at 10 mA cm-2 for overall water splitting, which is superior to the RuO2 || Pt/C counterpart and most of the state-of-the-art electrolyzers, demonstrating the high potential of the fabricated electrocatalyst by P doping strategy to explore more highly efficient selenide-based catalysts for various reactions.

9.
BMC Cancer ; 23(1): 920, 2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37773106

RESUMO

BACKGROUND: Despite major advances in cancer therapeutics, the therapeutic options of Lung Squamous Cell Carcinoma (LSCC)-specific remain limited. Furthermore, the current staging system is imperfect for defining a prognosis and guiding treatment due to its simplicity and heterogeneity. We sought to develop prognostic decision tools for individualized survival prediction and treatment optimization in elderly patients with LSCC. METHODS: Clinical data of 4564 patients (stageIB-IIIB) diagnosed from 2010 to 2015 were extracted from the Surveillance, Epidemiology, and End Results (SEER) database for prognostic nomograms development. The proposed models were externally validated using a separate group consisting of 1299 patients (stage IB-IIIB) diagnosed from 2012-2015 in China. The prognostic performance was measured using the concordance index (C-index), calibration curves, the average time-dependent area under the receiver operator characteristic curves (AUC), and decision curve analysis. RESULTS: Eleven candidate prognostic variables were identified by the univariable and multivariable Cox regression analysis. The calibration curves showed satisfactory agreement between the actual and nomogram-estimated Lung Cancer-Specific Survival (LCSS) rates. By calculating the c-indices and average AUC, our nomograms presented a higher prognostic accuracy than the current staging system. Clinical usefulness was revealed by the decision curve analysis. User-friendly online decision tools integrating proposed nomograms were created to estimate survival for patients with different treatment regimens. CONCLUSIONS: The decision tools for individualized survival prediction and treatment optimization might facilitate clinicians with decision-making, medical teaching, and experimental design. Online tools are expected to be integrated into clinical practice by using the freely available website ( https://loyal-brand-611803.framer.app/ ).


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Carcinoma de Células Escamosas , Neoplasias Pulmonares , Humanos , Idoso , Estadiamento de Neoplasias , Estudos Retrospectivos , Prognóstico , Carcinoma de Células Escamosas/patologia , Nomogramas , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/terapia , Pulmão/patologia , Programa de SEER
10.
Ther Drug Monit ; 45(4): 566-570, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37074816

RESUMO

BACKGROUND: Standard and proper antituberculosis (anti-TB) treatment is essential for patients with TB, and rifamycin antibiotics are key components of anti-TB therapy. Therapeutic drug monitoring (TDM) of rifamycin antibiotics can shorten the time to response and complete treatment of TB. Notably, antimicrobial activities of the major active metabolites of rifamycin are similar to those of their parent compounds. Thus, a rapid and simple assay was developed for simultaneous determination of rifamycin antibiotics and their major active metabolites in plasma to evaluate their impact on target peak concentrations. Here, the authors have developed and validated a method for simultaneous determination of rifamycin antibiotics and their active metabolites in human plasma using ultrahigh-performance liquid chromatography tandem mass spectrometry. METHODS: Analytical validation of the assay was performed in accordance with the bioanalytical method validation guidance for industry described by the US Food and Drug Administration and the guidelines for bioanalytical method validation described by the European Medicines Agency. RESULTS: The drug concentration quantification method for rifamycin antibiotics, including rifampicin, rifabutin, and rifapentine, and their major active metabolites was validated. Significant differences in the proportions of active metabolites in rifamycin antibiotics may affect the redefinition of their effective concentration ranges in the plasma. The method developed herein is expected to redefine the ranges of "true" effective concentrations of rifamycin antibiotics (including parent compounds and their active metabolites). CONCLUSIONS: The validated method can be successfully applied for high-throughput analysis of rifamycin antibiotics and their active metabolites for TDM in patients receiving anti-TB treatment regimens containing these antibiotics. Proportions of active metabolites in rifamycin antibiotics markedly varied among individuals. Depending on the clinical indications of patients, the therapeutic ranges for rifamycin antibiotics may be redefined.


Assuntos
Antibacterianos , Rifamicinas , Humanos , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida de Alta Pressão/métodos , Reprodutibilidade dos Testes , Monitoramento de Medicamentos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA