Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 626(8000): 765-771, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38383627

RESUMO

Photonic bound states in the continuum (BICs), embedded in the spectrum of free-space waves1,2 with diverging radiative quality factor, are topologically non-trivial dark modes in open-cavity resonators that have enabled important advances in photonics3,4. However, it is particularly challenging to achieve maximum near-field enhancement, as this requires matching radiative and non-radiative losses. Here we propose the concept of supercritical coupling, drawing inspiration from electromagnetically induced transparency in near-field coupled resonances close to the Friedrich-Wintgen condition2. Supercritical coupling occurs when the near-field coupling between dark and bright modes compensates for the negligible direct far-field coupling with the dark mode. This enables a quasi-BIC field to reach maximum enhancement imposed by non-radiative loss, even when the radiative quality factor is divergent. Our experimental design consists of a photonic-crystal nanoslab covered with upconversion nanoparticles. Near-field coupling is finely tuned at the nanostructure edge, in which a coherent upconversion luminescence enhanced by eight orders of magnitude is observed. The emission shows negligible divergence, narrow width at the microscale and controllable directivity through input focusing and polarization. This approach is relevant to various physical processes, with potential applications for light-source development, energy harvesting and photochemical catalysis.

2.
Brief Bioinform ; 25(3)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38600668

RESUMO

Microbial community analysis is an important field to study the composition and function of microbial communities. Microbial species annotation is crucial to revealing microorganisms' complex ecological functions in environmental, ecological and host interactions. Currently, widely used methods can suffer from issues such as inaccurate species-level annotations and time and memory constraints, and as sequencing technology advances and sequencing costs decline, microbial species annotation methods with higher quality classification effectiveness become critical. Therefore, we processed 16S rRNA gene sequences into k-mers sets and then used a trained DNABERT model to generate word vectors. We also design a parallel network structure consisting of deep and shallow modules to extract the semantic and detailed features of 16S rRNA gene sequences. Our method can accurately and rapidly classify bacterial sequences at the SILVA database's genus and species level. The database is characterized by long sequence length (1500 base pairs), multiple sequences (428,748 reads) and high similarity. The results show that our method has better performance. The technique is nearly 20% more accurate at the species level than the currently popular naive Bayes-dominated QIIME 2 annotation method, and the top-5 results at the species level differ from BLAST methods by <2%. In summary, our approach combines a multi-module deep learning approach that overcomes the limitations of existing methods, providing an efficient and accurate solution for microbial species labeling and more reliable data support for microbiology research and application.


Assuntos
Aprendizado Profundo , Microbiota , RNA Ribossômico 16S/genética , Teorema de Bayes , Microbiota/genética , Bactérias/genética , Filogenia
3.
Nat Mater ; 23(6): 803-809, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38191632

RESUMO

High-sensitivity radiation detectors for energetic particles are essential for advanced applications in particle physics, astronomy and cancer therapy. Current particle detectors use bulk crystals, and thin-film organic scintillators have low light yields and limited radiation tolerance. Here we present transmissive thin scintillators made from CsPbBr3 nanocrystals, designed for real-time single-proton counting. These perovskite scintillators exhibit exceptional sensitivity, with a high light yield (~100,000 photons per MeV) when subjected to proton beams. This enhanced sensitivity is attributed to radiative emission from biexcitons generated through proton-induced upconversion and impact ionization. These scintillators can detect as few as seven protons per second, a sensitivity level far below the rates encountered in clinical settings. The combination of rapid response (~336 ps) and pronounced ionostability enables diverse applications, including single-proton tracing, patterned irradiation and super-resolution proton imaging. These advancements have the potential to improve proton dosimetry in proton therapy and radiography.

4.
Chem Soc Rev ; 53(13): 6960-6991, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38836431

RESUMO

The past few decades have witnessed encouraging progress in the development of high-performance film-based fluorescent sensors (FFSs) for detecting explosives, illicit drugs, chemical warfare agents (CWAs), and hazardous volatile organic chemicals (VOCs), among others. Several FFSs have transitioned from laboratory research to real-world applications, demonstrating their practical relevance. At the heart of FFS technology lies the sensing films, which play a crucial role in determining the analytes and the resulting signals. The selection of sensing fluorophores and the fabrication strategies employed in film construction are key factors that influence the fluorescence properties, active-layer structures, and overall sensing behaviors of these films. This review examines the progress and innovations in the research field of FFSs over the past two decades, focusing on advancements in fluorophore design and active-layer structural engineering. It underscores popular sensing fluorophore scaffolds and the dynamics of excited state processes. Additionally, it delves into six distinct categories of film fabrication technologies and strategies, providing insights into their advantages and limitations. This review further addresses important considerations such as photostability and substrate effects. Concluding with an overview of the field's challenges and prospects, it sheds light on the potential for further development in this burgeoning area.

5.
Nano Lett ; 24(8): 2503-2510, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38258747

RESUMO

X-ray scintillators have utility in radiation detection, therapy, and imaging. Various materials, such as halide perovskites, organic illuminators, and metal clusters, have been developed to replace conventional scintillators due to their ease of fabrication, improved performance, and adaptability. However, they suffer from self-absorption, chemical instability, and weak X-ray stopping power. Addressing these limitations, we employ alkali metal doping to turn nonemissive CsPb2Br5 into scintillators. Introducing alkali metal dopants causes lattice distortion and enhances electron-phonon coupling, which creates transient potential energy wells capable of trapping photogenerated or X-ray-generated electrons and holes to form self-trapped excitons. These self-trapped excitons undergo radiative recombination, resulting in a photoluminescence quantum yield of 55.92%. The CsPb2Br5-based X-ray scintillator offers strong X-ray stopping power, high resistance to self-absorption, and enhanced stability when exposed to the atmosphere, chemical solvents, and intense irradiation. It exhibits a detection limit of 162.3 nGyair s-1 and an imaging resolution of 21 lp mm-1.

6.
J Am Chem Soc ; 146(10): 6471-6475, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38428039

RESUMO

Adaptive materials that exhibit a multichromatic response as a function of applied stimulus are highly desirable, as they can result in applications ranging from smart surfaces to anticounterfeit devices. Here we report on such a system based on an intriguing thermal 1,2-BF2 shift that transforms a visible-light-activated azo-BF2 photoswitch into a BF2-hydrazone fluorophore (BODIHY) in both solution and the solid-state. Structure-property analysis, in conjunction with DFT calculations, reveals that the shift is catalyzed by the spatial proximity of an oxygen atom next to the BF2 group and that the activation originates from an electronic and not steric effect. Theoretical calculations also show that while the energy barrier for the trans → BODIHY transformation is accessible at room temperature (thermal half-life of 30 h), the cis → BODIHY transformation has a much higher barrier, which is why the 1,2-BF2 shift is not observed for the cis form. The photoswitching of the azo-BF2, in conjunction with the 1,2-BF2 shift, was then used in the multicolor modulation of a switch-containing cross-linked polydimethylsiloxane film using light and/or heat stimuli, elaborating the usefulness of the sophisticated reaction cascade that can be accessed from this simple system.

7.
J Am Chem Soc ; 146(13): 9413-9421, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38506128

RESUMO

Precise control of cellular signaling events during programmed cell death is crucial yet challenging for cancer therapy. The modulation of signal transduction in cancer cells holds promise but is limited by the lack of efficient, biocompatible, and spatiotemporally controllable approaches. Here we report a photodynamic strategy that modulates both apoptotic and pyroptotic cell death by altering caspase-3 protein activity and the associated signaling crosstalk. This strategy employs a mitochondria-targeting, near-infrared activatable probe (termed M-TOP) that functions via a type-I photochemical mechanism. M-TOP is less dependent on oxygen and more effective in treating drug-resistant cancer cells, even under hypoxic conditions. Our study shows that higher doses of M-TOP induce pyroptotic cell death via the caspase-3/gasdermin-E pathway, whereas lower doses lead to apoptosis. This photodynamic method is effective across diverse gasdermin-E-expressing cancer cells. Moreover, the M-TOP mediated shift from apoptotic to pyroptotic modulation can evoke a controlled inflammatory response, leading to a robust yet balanced immune reaction. This effectively inhibits both distal tumor growth and postsurgical tumor recurrence. This work demonstrates the feasibility of modulating intracellular signaling through the rational design of photodynamic anticancer drugs.


Assuntos
Gasderminas , Neoplasias , Humanos , Caspase 3/metabolismo , Apoptose , Transdução de Sinais , Mitocôndrias/metabolismo , Neoplasias/metabolismo , Caspase 8/metabolismo , Caspase 8/farmacologia , Caspase 1/metabolismo , Caspase 1/farmacologia
8.
J Am Chem Soc ; 146(10): 6566-6579, 2024 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-38422385

RESUMO

Superior photostability, minimal phototoxicity, red-shifted absorption/emission wavelengths, high brightness, and an enlarged Stokes shift are essential characteristics of top-tier organic fluorophores, particularly for long-lasting super-resolution imaging in live cells (e.g., via stimulated emission depletion (STED) nanoscopy). However, few existing fluorophores possess all of these properties. In this study, we demonstrate a general approach for simultaneously enhancing these parameters through the introduction of 9,9-dimethyl-9,10-dihydroacridine (DMA) as an electron-donating auxochrome. DMA not only induces red shifts in emission wavelengths but also suppresses photooxidative reactions and prevents the formation of triplet states in DMA-based fluorophores, greatly improving photostability and remarkably minimizing phototoxicity. Moreover, the DMA group enhances the fluorophores' brightness and enlarges the Stokes shift. Importantly, the "universal" benefits of attaching the DMA auxochrome have been exemplified in various fluorophores including rhodamines, difluoride-boron complexes, and coumarin derivatives. The resulting fluorophores successfully enabled the STED imaging of organelles and HaloTag-labeled membrane proteins.


Assuntos
Corantes Fluorescentes , Humanos , Rodaminas , Microscopia de Fluorescência/métodos , Células HeLa , Ionóforos
9.
Anal Chem ; 96(16): 6148-6157, 2024 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-38603515

RESUMO

Photodynamic therapy (PDT) provides an alternative approach to targeted cancer treatment, but the therapeutic mechanism of advanced nanodrugs applied to live cells and tissue is still not well understood. Herein, we employ the hybrid hyperspectral stimulated Raman scattering (SRS) and transient absorption (TA) microscopy developed for real-time in vivo visualization of the dynamic interplay between the unique photoswichable lanthanide-doped upconversion nanoparticle-conjugated rose bengal and triphenylphosphonium (LD-UCNP@CS-Rb-TPP) probe synthesized and live cancer cells. The Langmuir pharmacokinetic model associated with SRS/TA imaging is built to quantitatively track the uptakes and pharmacokinetics of LD-UCNP@CS-Rb-TPP within cancer cells. Rapid SRS/TA imaging quantifies the endocytic internalization rates of the LD-UCNP@CS-Rb-TPP probe in individual HeLa cells, and the translocation of LD-UCNP@CS-Rb-TPP from mitochondria to cell nuclei monitored during PDT can be associated with mitochondria fragmentations and the increased nuclear membrane permeability, cascading the dual organelle ablations in cancer cells. The real-time SRS spectral changes of cellular components (e.g., proteins, lipids, and DNA) observed reflect the PDT-induced oxidative damage and the dose-dependent death pattern within a single live cancer cell, thereby facilitating the real-time screening of optimal light dose and illumination duration controls in PDT. This study provides new insights into the further understanding of drug delivery and therapeutic mechanisms of photoswitchable LD-UCNP nanomedicine in live cancer cells, which are critical in the optimization of nanodrug formulations and development of precision cancer treatment in PDT.


Assuntos
Nanopartículas , Fotoquimioterapia , Fármacos Fotossensibilizantes , Humanos , Células HeLa , Nanopartículas/química , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Análise Espectral Raman , Rosa Bengala/química , Rosa Bengala/farmacologia , Microscopia Óptica não Linear , Relação Dose-Resposta a Droga
10.
Bioconjug Chem ; 35(7): 1024-1032, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38963403

RESUMO

Tetrazine-derived fluorogenic labels are extensively studied for their potential in biological and medical imaging. Nonetheless, the fluorescence quenching mechanism in numerous precursors continues to be debated, particularly as the wavelengths extend into the red and near-infrared (NIR) regions. This challenge poses obstacles to systematically optimizing their fluorogenicity, i.e., achieving red-shifted wavelengths and improved fluorescence turn-on signals through click reactions. This paper highlights the significance of photoinduced charge centralization (PCC), a quenching mechanism observed in tetrazine-fused fluorogenic labels with integrated π-conjugations. PCC is primarily responsible for the quenching effects observed in such labels emitting in the red-to-NIR spectrum. Drawing from structure-property relationships, this study proposes two molecular design strategies that incorporate the PCC mechanism and constitutional isomerization to develop high-performance tetrazine-based labels. These strategies facilitate multiplex fluorescence imaging following click reactions, promising significant advancements in bio-orthogonal imaging techniques.


Assuntos
Corantes Fluorescentes , Corantes Fluorescentes/química , Compostos Heterocíclicos com 1 Anel/química , Fluorescência , Química Click , Imagem Óptica/métodos , Processos Fotoquímicos
11.
Phys Rev Lett ; 132(26): 266801, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38996289

RESUMO

Nuclear spin polarization plays a crucial role in quantum information processing and quantum sensing. In this work, we demonstrate a robust and efficient method for nuclear spin polarization with boron vacancy (V_{B}^{-}) defects in hexagonal boron nitride (h-BN) using ground-state level anticrossing (GSLAC). We show that GSLAC-assisted nuclear polarization can be achieved with significantly lower laser power than excited-state level anticrossing, making the process experimentally more viable. Furthermore, we have demonstrated direct optical readout of nuclear spins for V_{B}^{-} in h-BN. Our findings suggest that GSLAC is a promising technique for the precise control and manipulation of nuclear spins in V_{B}^{-} defects in h-BN.

12.
Chemistry ; 30(15): e202303707, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38221317

RESUMO

Fluorogenic dyes with high brightness, large turn-on ratios, excellent photostability, favorable specificity, low cytotoxicity, and high membrane permeability are essential for high-resolution fluorescence imaging in live cells. In this study, we endowed these desirable properties to a rhodamine derivative by simply replacing the N, N-diethyl group with a pyrrole substituent. The resulting dye, Rh-NH, exhibited doubled Stokes shifts (54 nm) and a red-shift of more than 50 nm in fluorescence spectra compared to Rhodamine B. Rh-NH preferentially exists in a non-emissive but highly permeable spirolactone form. Upon binding to lysosomes, the collective effects of low pH, low polarity, and high viscosity endow Rh-NH with significant fluorescence turn-on, making it a suitable candidate for wash-free, high-contrast lysosome tracking. Consequently, Rh-NH enabled us to successfully explore stimulated emission depletion (STED) super-resolution imaging of lysosome dynamics, as well as fluorescence lifetime imaging of lysosomes in live cells.


Assuntos
Corantes Fluorescentes , Lisossomos , Humanos , Corantes Fluorescentes/química , Rodaminas/química , Lisossomos/química , Células HeLa , Microscopia de Fluorescência/métodos
13.
Int J Biometeorol ; 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39158720

RESUMO

Rice is one of the major food crops, and the study of suitable planting areas for rice plays an important role in improving rice yield and optimizing the production layout. This study used Maximum Entropy (MaxEnt) model to simulate and predict the distribution of suitable rice planting areas in China from 1981 to 2020 by combining the climate, soil, and human activities, analyzed the spatial and temporal changes of suitable rice planting areas in China, and determined the main factors affecting rice planting suitability. The results indicated that the main factors influencing the distribution of suitable planting areas for rice in China were gross domestic product (GDP), population density (Pop), and annual sunshine duration (Sun), with human activities playing a dominant role. The high suitable planting areas of rice were mainly distributed in Hubei, Hunan, Jiangxi, Anhui, Guangdong, southeastern Sichuan and western Guizhou. The total suitable planting areas for rice were 346.00 × 104 km2, 345.66 × 104 km2, 347.01 × 104 km2, and 355.57 × 104 km2 from 1981 to 1990, 1991 to 2000, 2001 to 2010 and 2011 to 2020, respectively. With the passage of time, the area of unsuitable areas for rice gradually decreased, and the area of medium suitable areas increased, with large changes in the area of high- and low-suitable areas. Moreover, due to the transfer of a large number of rural laborers to the cities in recent years, the tension between people and land caused by the population explosion has led to the increasing impact of Pop on rice suitable areas and the relatively weakening of the impact of GDP on rice production interventions. The results can be used to provide scientific evidence for the management of rice cultivation and food production safety, with a view to reducing the impacts of climate change on agricultural production in the context of global climate change.

14.
Angew Chem Int Ed Engl ; : e202411636, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39152515

RESUMO

Aberrant hypoxic stress will initiate a cascade of pathological consequence observed prominently in tumorigenesis. Understanding of hypoxia's role in tumorigenesis is  highly essential for developing effective therapeutics, which necessitates reliable tools to specifically distinguish hypoxic tumor cells (or tissues) and correlate their dynamics with the status of disease in complex living settings for precise theranostics. So far, disparate hypoxia-responsive probe molecules and prodrugs were designed via chemical or enzymatic reactions, yet their capability in real-time reporting pathogenesis development is often compromised due to unrestricted diffusion and less selectivity towards the environmental responsiveness. Herein we present an oxygen-insensitive nitroreductase (NTR)-activatable glycan metabolic reporter (pNB-ManNAz) capable of covalently labeling hypoxic tumor cells and tissues. Under pathophysiological hypoxic environments, the caged non-metabolizable precursor pNB-ManNAz exhibited unique responsiveness to cellular NTR, culminating in structural self-immolation and the resultant ManNAz could incorporate onto cell surface glycoproteins, thereby facilitating fluorescence labeling via bioorthogonal chemistry. This NTR-responsive metabolic reporter demonstrated broad applicability for multicellular hypoxia labeling, particularly in the dynamic monitoring of orthotopic tumorigenesis and targeted tumor phototherapy in vivo. We anticipate that this approach holds promise for investigating hypoxia-related pathological progression, offering valuable insights for accurate diagnosis and treatment.

15.
Angew Chem Int Ed Engl ; 63(18): e202401949, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38437064

RESUMO

X-ray scintillators have gained significant attention in medical diagnostics and industrial applications. Despite their widespread utility, scintillator development faces a significant hurdle when exposed to elevated temperatures, as it usually results in reduced scintillation efficiency and diminished luminescence output. Here we report a molecular design strategy based on a hybrid perovskite (TpyBiCl5) that overcomes thermal quenching through multi-excited state switching. The structure of perovskite provides a platform to modulate the luminescence centers. The rigid framework constructed by this perovskite structure stabilized its triplet states, resulting in TpyBiCl5 exhibiting an approximately 12 times higher (45 % vs. 3.8 %) photoluminescence quantum yield of room temperature phosphorescence than that of its organic ligand (Tpy). Most importantly, the interactions between the components of this perovskite enable the mixing of different excited states, which has been revealed by experimental and theoretical investigations. The TpyBiCl5 scintillator exhibits a detection limit of 38.92 nGy s-1 at 213 K and a detection limit of 196.31 nGy s-1 at 353 K through scintillation mode switching between thermally activated delayed fluorescence and phosphorescence. This work opens up the possibility of solving the thermal quenching in X-ray scintillators by tuning different excited states.

16.
Angew Chem Int Ed Engl ; 63(10): e202319853, 2024 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-38242857

RESUMO

Developing fluorogenic probes for simultaneous live cell labeling of multiple targets is crucial for understanding complex cellular events. The emerging [4+1] cycloaddition between tetrazine and isonitriles holds promise as a bioorthogonal tool, yet existing tetrazine probes lack reactivity and fluorogenicity. Here, we present the development of a series of tetrazine-functionalized bioorthogonal probes. By incorporating pyrazole adducts into the fluorophore scaffolds, the post-reacted probes displayed remarkable fluorescence turn-on ratios, up to 3184-fold. Moreover, these modifications are generalizable to various fluorophores, enabling a broad emission range from 473 to 659 nm. Quantum chemical calculations further elucidate the turn-on mechanisms. These probes enable the simultaneous labeling of multiple targets in live cells, without the need for a washing step. Consequently, our findings pave the way for advanced multiplex imaging and detection techniques for cellular studies.


Assuntos
Corantes Fluorescentes , Imagem Óptica , Linhagem Celular Tumoral , Reação de Cicloadição , Imagem Óptica/métodos
19.
Polymers (Basel) ; 16(15)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39125223

RESUMO

Large-tow carbon fiber-reinforced polymer composites (CFRP) have great application potential in civil engineering due to their low price, but their basic mechanical properties are still unclear. The tensile properties of large-tow CFRP rods and plates were investigated in this study. First, the tensile properties of unidirectional CFRP rods and plates were studied, and the test results of the relevant mechanical properties were statistically analyzed. The tensile strength of the CFRP rod and plate are 2005.97 MPa and 2069.48 MPa. Second, the surface of the test specimens after failure was observed using a scanning electron microscope to analyze the type of failure and damage evolution process. Finally, the probabilistic characteristics of the mechanical properties were analyzed using normal, lognormal, and Weibull distributions for parameter fitting. Quasi-optimality tests were performed, and a probability distribution model was proposed for the mechanical properties of large-tow CFRP rods and plates.

20.
Plant Physiol Biochem ; 209: 108540, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38518398

RESUMO

Citrus, cultivated extensively across the globe, possesses considerable economic importance and nutritional value. With the degradation of chlorophyll and accumulation of carotenoids, mature citrus fruits develop an orange-yellow peel, enhancing fruit value and consumer preference. MYB transcription factors (TFs) exert a significant role in diverse plant developmental processes and investigating their involvement in fruit coloration is crucial for developing new cultivars. This work aimed to characterize a citrus TF, CrMYB33, whose expression was found to be positively correlated with carotenoid biosynthesis during fruit ripening. The interference of CrMYB33 expression in citrus fruit resulted in inhibition of carotenoid accumulation, down-regulation of carotenoid biosynthetic genes, and a slower rate of chlorophyll degradation. Conversely, overexpression of CrMYB33 in tomato (Solanum lycopersicum) enhanced chlorophyll degradation and carotenoid biosynthesis, resulting in a deeper red coloration of the fruits. Furthermore, the transcription of associated genes was upregulated in CrMYB33-overexpressing tomato fruits. Additional assays reveal that CrMYB33 exhibits direct links and activation of the promoters of lycopene ß-cyclase 2 (CrLCYb2), and ß-carotene hydroxylases 2 (CrBCH2), both crucial genes in the carotenoid biosynthetic pathway. Additionally, it was found to inhibit chlorophyllase (CrCLH), a gene essential in chlorophyll degradation. These findings provide insight into the observed changes in LCYb2, BCH2, and CLH expression in the transgenic lines under investigation. In conclusion, our study revealed that CrMYB33 modulates carotenoid accumulation and chlorophyll degradation in citrus fruits through transcriptionally activating genes involved in metabolic pathways.


Assuntos
Citrus , Citrus/genética , Citrus/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica de Plantas , Carotenoides/metabolismo , Clorofila/metabolismo , Frutas/genética , Frutas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA