Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Genomics ; 115(5): 110666, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37315874

RESUMO

Although high-throughput, cancer cell-line screening is a time-honored, important tool for anti-cancer drug development, this process involves the testing of each, individual drug in each, individual cell-line. Despite the availability of robotic liquid handling systems, this process remains a time-consuming and costly investment. The Broad Institute developed a new method called Profiling Relative Inhibition Simultaneously in Mixtures (PRISM) to screen a mixture of barcoded, tumor cell-lines. Although this methodology significantly improved the efficiency of screening large numbers of cell-lines, the barcoding process itself was tedious that requires gene transfection and subsequent selection of stable cell-lines. In this study, we developed a new, genomic approach for screening multiple cancer cell-lines using endogenous "tags" that did not require prior barcoding: single nucleotide polymorphism-based, mixed-cell screening (SMICS). The code for SMICS is available at https://github.com/MarkeyBBSRF/SMICS.


Assuntos
Antineoplásicos , Polimorfismo de Nucleotídeo Único , Linhagem Celular Tumoral , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos
2.
Eur J Med Chem ; 265: 116119, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38194773

RESUMO

Peptide-drug conjugates (PDCs) are the new hope for targeted therapy after antibody-drug conjugates (ADCs). Compared with ADCs, the core advantages of PDCs are enhanced tissue penetration, easier chemical synthesis, and lower production costs. Two PDCs have been approved by the US Food and Drug Administration (FDA) for the treatment of cancer. The therapeutic effects of PDCs are remarkable, but PDCs also encounter problems when used as targeted therapeutics, such as poor stability, a short blood circulation time, a long research and development time frame, and a slow clinical development process. Therefore, it is very urgent and important to understand the latest research progress of cancer cells targeting PDC, the solution to its stability problem, the scheme of computer technology to assist its research and development, and the direction of its future development. In this manuscript, based on the structure and function of PDCs, the latest research progress on PDCs from the aspects of cancer cell-targeting peptide (CTP) selection, pharmacokinetic characteristics, stability regulation and so on were systematically reviewed, hoping to highlight the current problems and future development directions of PDCs.


Assuntos
Imunoconjugados , Neoplasias , Humanos , Preparações Farmacêuticas , Sistemas de Liberação de Medicamentos , Peptídeos/farmacologia , Peptídeos/uso terapêutico , Peptídeos/química , Neoplasias/tratamento farmacológico , Imunoconjugados/química
3.
ACS Sens ; 9(2): 849-859, 2024 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-38271684

RESUMO

Noble metal nanoparticle (NMP)-based composite substrates have garnered significant attention as a highly promising technique for surface-enhanced Raman scattering (SERS) in diverse scientific disciplines because their remarkable ability to amplify and functionalize Raman signals has positioned them as valuable tools for molecular detection. However, optimizing the size and distribution of NMPs has not received sufficient emphasis because of challenges associated with the precise control of deposition and the modulation of reducing rates during growth. In this research, we achieved the optimized size and spatial patterns of AgNWs on electrospun poly(vinylidene fluoride) (PVDF) nanofibers by utilizing a polydopamine (PDA) layer as a mild and controllable reduction mediator, by which the size and density of the AgNWs could be relatively precisely manipulated, achieving a dense distribution of effective "hot spots". On the other hand, harnessing the inherent piezoelectric properties of the electrospun PVDF nanofibers further boosted the LSPR effect during the SERS test, forming a flexible dual-enhancing composite SERS substrate with excellent sensitivity. In addition to addressing structural aspects, exploiting synergistic systems capable of transferring external energy or forces to enhance the SERS performances presents a compelling avenue to broaden the practical applications of SERS. The dual-enhanced substrate achieved an exceptional enhancement factor (EF) of 1.05 × 108 and a low detection limit (LOD) of 10-10 M during the SERS test. This study focuses on integrating NMPs with electrospun piezoelectric polymer nanofibers to develop a dual-enhancing SERS substrate with excellent sensitivity and practicality. The findings provide valuable insights into controllably depositing NMPs on electrospun polymer fibers and hold significant implications for the development of highly sensitive and practical SERS substrates across various applications.


Assuntos
Polímeros de Fluorcarboneto , Nanopartículas Metálicas , Nanofibras , Polivinil , Nanofibras/química , Nanopartículas Metálicas/química , Prata/química , Polímeros
4.
Sci Rep ; 14(1): 5959, 2024 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-38472335

RESUMO

In recent years, human umbilical cord mesenchymal stem cell (hUC-MSC) extracellular vesicles (EVs) have been used as a cell replacement therapy and have been shown to effectively overcome some of the disadvantages of cell therapy. However, the specific mechanism of action of EVs is still unclear, and there is no appropriate system for characterizing the differences in the molecular active substances of EVs produced by cells in different physiological states. We used a data-independent acquisition (DIA) quantitative proteomics method to identify and quantify the protein composition of two generations EVs from three different donors and analysed the function and possible mechanism of action of the proteins in EVs of hUC-MSCs via bioinformatics. By comparative proteomic analysis, we characterized the different passages EVs. Furthermore, we found that adaptor-related protein complex 2 subunit alpha 1 (AP2A1) and adaptor-related protein complex 2 subunit beta 1 (AP2B1) in hUC-MSC-derived EVs may play a significant role in the treatment of Alzheimer's disease (AD) by regulating the synaptic vesicle cycle signalling pathway. Our work provides a direction for batch-to-batch quality control of hUC-MSC-derived EVs and their application in AD treatment.


Assuntos
Doença de Alzheimer , Vesículas Extracelulares , Células-Tronco Mesenquimais , Humanos , Doença de Alzheimer/metabolismo , Proteômica , Complexo 2 de Proteínas Adaptadoras/metabolismo , Vesículas Extracelulares/metabolismo
5.
Cancers (Basel) ; 16(7)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38611076

RESUMO

Cancer cells undergo a significant level of "metabolic reprogramming" or "remodeling" to ensure an adequate supply of ATP and "building blocks" for cell survival and to facilitate accelerated proliferation. Cancer cells preferentially use glycolysis for ATP production (the Warburg effect); however, cancer cells, including colorectal cancer (CRC) cells, also depend on oxidative phosphorylation (OXPHOS) for ATP production, a finding that suggests that both glycolysis and OXPHOS play significant roles in facilitating cancer progression and proliferation. Our prior studies identified a semisynthetic isoflavonoid, DBI-1, that served as an AMPK activator targeting mitochondrial complex I. Furthermore, DBI-1 and a glucose transporter 1 (GLUT1) inhibitor, BAY-876, synergistically inhibited CRC cell growth in vitro and in vivo. We now report a study of the structure-activity relationships (SARs) in the isoflavonoid family in which we identified a new DBI-1 analog, namely, DBI-2, with promising properties. Here, we aimed to explore the antitumor mechanisms of DBIs and to develop new combination strategies by targeting both glycolysis and OXPHOS. We identified DBI-2 as a novel AMPK activator using an AMPK phosphorylation assay as a readout. DBI-2 inhibited mitochondrial complex I in the Seahorse assays. We performed proliferation and Western blotting assays and conducted studies of apoptosis, necrosis, and autophagy to corroborate the synergistic effects of DBI-2 and BAY-876 on CRC cells in vitro. We hypothesized that restricting the carbohydrate uptake with a KD would mimic the effects of GLUT1 inhibitors, and we found that a ketogenic diet significantly enhanced the therapeutic efficacy of DBI-2 in CRC xenograft mouse models, an outcome that suggested a potentially new approach for combination cancer therapy.

6.
Foods ; 12(13)2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37444207

RESUMO

The liver is a digestive and metabolic organ, and several factors can induce liver damage, which is a severe threat to human health. As a natural polyphenolic compound, mangiferin belongs to xanthone glucoside and mainly exists in many plants, such as mango. It is notorious that mangiferin has remarkable pharmacological activities such as anti-inflammatory, anti-tumor, antioxidative stress, antiviral and so on. Emerging evidence indicates the therapeutic benefits of mangiferin against liver disease, including liver injury, nonalcoholic fatty liver disease, alcoholic liver disease, liver fibrosis, and hepatocellular carcinoma. This review aims to summarize the possible underlying signaling mediated by mangiferin in liver disease treatment and the available findings of mangiferin, which can be used to treat different liver diseases and may contribute to mangiferin as a therapeutic agent for liver disease in humans.

7.
Mol Nutr Food Res ; 67(14): e2200885, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37160728

RESUMO

SCOPE: Mitochondrial DNA (mtDNA) released into the cytosol serves as a member of damage-associated molecular patterns to initiate inflammatory responses. Mangiferin is a xanthonoid derivative, usually isolated from plants including mangoes and iris unguicularis. This study aims to investigate whether mangiferin prevents mtDNA accumulation in the cytosol with a focus on deoxyribonuclease 2 (DNase 2) protection from oxidative damage. METHODS AND RESULTS: Mangiferin administration effectively protects against hepatotoxicity in mice subjected to CCl4 challenge or bile duct ligation (BDL) surgery. Moreover, mangiferin activates nuclear factor erythroid 2-related factor (Nrf2)-antioxidant signaling, reduces cytosolic mtDNA accumulation, and suppresses Toll-like receptor 9 (TLR-9)/myeloid differentiation factor 88 (MyD88)-dependent inflammation in the liver. The study prepares hepatic mtDNA to stimulate hepatocytes, and finds that mangiferin protects DNase 2 protein abundance. mtDNA induces reactive oxygen species (ROS) production to promote DNase 2 protein degradation through oxidative modification, but mangiferin protects DNase 2 protein stability in a Nrf2-dependent manner. In hepatic Nrf2 deficiency mice, the study further confirms that Nrf2 induction is required for mangiferin to clear cytosolic mtDNA and block mtDNA-mediated TLR9/MyD88/nuclear factor kappa-B (NF-κB) inflammatory signaling cascades. CONCLUSION: These findings provide new insights into the role of mangiferin as a liver protecting agent, and suggest protection of DNase 2 as a novel therapeutic strategy for pharmacological intervention to prevent liver damage.


Assuntos
DNA Mitocondrial , Fator 2 Relacionado a NF-E2 , Camundongos , Animais , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , DNA Mitocondrial/metabolismo , DNA Mitocondrial/farmacologia , Citosol/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , Fígado/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Desoxirribonucleases/metabolismo , Desoxirribonucleases/farmacologia
8.
Neuroscience ; 526: 85-96, 2023 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-37352968

RESUMO

Vitamin D3 may suppress microglial activation and neuroinflammation, which play a central role in the pathophysiology of many neurological disorders. Sirt6 can remove histone 3 lysine 9 acetylation (H3K9ac) to repress expression of pathological genes and produce anti-inflammatory effects. However, whether vitamin D3 upregulates microglial Sirt6 to exert its protective effects against microglial activation and neuroinflammation is unclear. The effects of lower, normal, and higher dosages (1, 10 and 100 µg/kg/day) of vitamin D3 on behavioral and neuromorphological changes, brain inflammatory factors, Sirt6 and H3K9ac levels, and microglial Sirt6 distribution in hippocampus were evaluated in lipopolysaccharide (LPS)-stimulated mice. In addition, the effects of vitamin D3 on inflammatory factors, reactive oxygen species, Sirt6, and H3K9ac were confirmed in LPS-stimulated BV-2 cells. We verified that vitamin D3 ameliorated the impaired sociability of LPS-stimulated mice by three-chamber test. In addition, vitamin D3 upregulated brain Sirt6 generation, reduced H3K9ac levels and inhibited generation of brain inflammatory factors. Moreover, vitamin D3 promoted microglial Sirt6 distribution and attenuated microglia displaying an activated morphology in the hippocampus of LPS-stimulated mice. Similarly, vitamin D3 upregulated Sirt6 generation and intensity, reduced H3K9ac levels, and inhibited the inflammatory activation of LPS-stimulated BV-2 cells. In conclusion, vitamin D3 may upregulate microglial Sirt6 to reduce H3K9ac and inhibit microglial activation, thereby antagonizing neuroinflammation.


Assuntos
Inflamação , Sirtuínas , Camundongos , Animais , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo , Microglia/metabolismo , Regulação para Cima , Doenças Neuroinflamatórias , Colecalciferol/farmacologia , Colecalciferol/metabolismo , Sirtuínas/metabolismo
9.
Int J Nanomedicine ; 18: 7173-7181, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38076734

RESUMO

Introduction: The monkeypox (Mpox) virus epidemic presents a significant risk to global public health security. A35R, a crucial constituent of EEV, plays a pivotal role in virus transmission, serves as a vital target for vaccine development, and has potential for serological detection. Currently, there is a dearth of research on nanobodies targeting A35R. The purpose of this study is to identify specific nanobodies target A35R, so as to provide new antibody candidates for Mpox vaccine development and diagnostic kit development. Methods: Three nanobodies specific to the monkeypox virus protein A35R were screened from a naïve phage display library. After four rounds of panning, positive phage clones were identified by enzyme-linked immunosorbent assay (ELISA). Further, the nanobody fusion protein was constructed in pNFCG1-IgG1-Fc vector and expressed in HEK293F cells and purified by affinity chromatography. The specificity and affinity of the nanobodies were identified by ELISA. The binding kinetics of the VHH antibody to A35R were assessed via employment of a bio-layer interferometry (BLI) apparatus, thereby determining the nanobodies affinity. Results: The three purified nanobodies showed specific high-affinity binding MPXV A35R, of them, VHH-1 had the best antigen binding affinity (EC50 = 0.010 ug/mL). In addition, VHH-1 on Protein A biosensor can bind Mpox virus A35R, with an affinity constant of 54 nM as determined in BLI assay. Conclusion: In sum, we has obtained three nanobody strains against Mpox virus A35R with significant affinity and specificity, therefore laying an essential foundation for further research as well as the applications of diagnostic and therapeutic tools of Mpox virus.


Assuntos
Bacteriófagos , Mpox , Anticorpos de Domínio Único , Humanos , Monkeypox virus , Anticorpos de Domínio Único/química , Técnicas de Visualização da Superfície Celular , Ensaio de Imunoadsorção Enzimática/métodos
10.
Microbes Infect ; 25(8): 105180, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37419238

RESUMO

Although gut dysbiosis contributes to systemic inflammation, the counteractive effect of systemic inflammation on gut microbiota is unknown. Vitamin D may exert anti-inflammatory effects against systemic inflammation, but its regulation of the gut microbiota is poorly understood. In this study, mice were intraperitoneally injected with lipopolysaccharide (LPS) to create a systemic inflammation model and received vitamin D3 treatment orally for 18 continuous days. Then, body weight, morphological changes in the colon epithelium, and gut microbiota (n = 3) were evaluated. We verified that LPS stimulation caused inflammatory changes in the colon epithelium, which could be obviously attenuated by vitamin D3 treatment (10 µg/kg/day) in mice. Then, 16S rRNA gene sequencing of the gut microbiota first revealed that LPS stimulation induced a large number of operational taxonomic units, and vitamin D3 treatment reduced the number. In addition, vitamin D3 had distinctive effects on the community structure of the gut microbiota, which was obviously changed after LPS stimulation. However, neither LPS nor vitamin D3 affected the alpha and beta diversity of the gut microbiota. Furthermore, statistical analysis of differential microorganisms showed that the relative abundance of microorganisms in the phylum Spirochaetes decreased, the family Micrococcaceae increased, the genus [Eubacterium]_brachy_group decreased, the genus Pseudarthrobacter increased, and the species Clostridiales_bacterium_CIEAF_020 decreased under LPS stimulation, but vitamin D3 treatment significantly reversed the LPS-induced changes in the relative abundance of these microorganisms. In conclusion, vitamin D3 treatment affected the gut microbiota and alleviated inflammatory changes in the colon epithelium in the LPS-stimulated systemic inflammation mouse model.


Assuntos
Microbioma Gastrointestinal , Animais , Camundongos , Lipopolissacarídeos , Colecalciferol/farmacologia , RNA Ribossômico 16S/genética , Inflamação , Bactérias
11.
Cells ; 12(7)2023 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-37048139

RESUMO

The deregulation in the Wnt/ß-catenin signaling pathway is associated with many human cancers, particularly colorectal cancer (CRC) and, therefore, represents a promising target for drug development. We have screened over 300 semisynthetic and natural compounds using a Wnt reporter assay and identified a family of novel chalcone derivatives (CXs) that inhibited Wnt signaling and CRC cell proliferation. Among them, we selected CX258 for further in vitro and in vivo study to investigate the molecular mechanisms. We found that CX258 significantly inhibited ß-catenin expression and nuclear translocation, inducing cell cycle arrest at the G2/M phase in CRC cells. Additionally, CX258 reduced the expression of DNA Topoisomerase II alpha (TOP2A) in CRC cells. Moreover, knocking down TOP2A by siRNAs inhibited the Wnt/ß-catenin signaling pathway, a finding suggesting that CX258 inhibited Wnt/ß-catenin signaling and CRC cell proliferation at least partially by modulating TOP2A. Further studies showed that CDK1 that interacts with TOP2A was significantly reduced after TOP2A knockdown. We demonstrated that CX258 significantly inhibited DLD-1 CRC cell xenografts in SCID mice. In summary, we identified CX258 as a promising candidate for colorectal cancer treatment by targeting the TOP2A/Wnt/ß-catenin signaling pathway.


Assuntos
Chalconas , Neoplasias Colorretais , Animais , Camundongos , Humanos , Via de Sinalização Wnt/genética , Chalconas/farmacologia , Chalconas/uso terapêutico , beta Catenina/metabolismo , Camundongos SCID , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo
12.
Circ Res ; 107(6): 715-27, 2010 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-20651287

RESUMO

RATIONALE: The cardiac gene regulatory network (GRN) is controlled by transcription factors and signaling inputs, but network logic in development and it unraveling in disease is poorly understood. In development, the membrane-tethered signaling ligand Neuregulin (Nrg)1, expressed in endocardium, is essential for ventricular morphogenesis. In adults, Nrg1 protects against heart failure and can induce cardiomyocytes to divide. OBJECTIVE: To understand the role of Nrg1 in heart development through analysis of null and hypomorphic Nrg1 mutant mice. METHODS AND RESULTS: Chamber domains were correctly specified in Nrg1 mutants, although chamber-restricted genes Hand1 and Cited1 failed to be activated. The chamber GRN subsequently decayed with individual genes exhibiting decay patterns unrelated to known patterning boundaries. Both trabecular and nontrabecular myocardium were affected. Network demise was spatiotemporally dynamic, the most sensitive region being the central part of the left ventricle, in which the GRN underwent complete collapse. Other regions were partially affected with graded sensitivity. In vitro, Nrg1 promoted phospho-Erk1/2-dependent transcription factor expression, cardiomyocyte maturation and cell cycle inhibition. We monitored cardiac pErk1/2 in embryos and found that expression was Nrg1-dependent and levels correlated with cardiac GRN sensitivity in mutants. CONCLUSIONS: The chamber GRN is fundamentally labile and dependent on signaling from extracardiac sources. Nrg1-ErbB1/4-Erk1/2 signaling critically sustains elements of the GRN in trabecular and nontrabecular myocardium, challenging our understanding of Nrg1 function. Transcriptional decay patterns induced by reduced Nrg1 suggest a novel mechanism for cardiac transcriptional regulation and dysfunction in disease, potentially linking biomechanical feedback to molecular pathways for growth and differentiation.


Assuntos
Redes Reguladoras de Genes/fisiologia , Coração/fisiologia , Miocárdio/metabolismo , Neuregulina-1/fisiologia , Animais , Bovinos , Células Cultivadas , Coração/embriologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Mutantes , Miocárdio/química , Miocárdio/citologia , Transdução de Sinais/fisiologia
13.
Chin Med ; 17(1): 137, 2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36510253

RESUMO

BACKGROUND: Acute lymphoblastic leukemia is an aggressive neoplasm and seriously threatens human health. A14 is one kind of semisynthetic aurone that exhibits the capability to inhibit prostate cancer, but little is known about the role of A14 on T-cell acute lymphoblastic leukemia. METHODS: Firstly, the effects of A14 on the ability of leukemia cells to proliferate were measured by Vi-cell counter. Then, we detected the cell cycle and apoptosis by flow cytometry and characterized the related protein expression using immunoblotting. In addition, we constructed stable luciferase expressing cell lines for use in a cell derived xenograft mouse model to measure the effect of A14 on T-cell acute lymphoblastic leukemia. RESULTS: Results exhibited that A14 markedly suppressed cell proliferation and induced G2/M phase arrest along with cell cycles regulating proteins changes. A14 led to apoptosis in leukemia cells, at least partly, through the cytochrome c signaling pathway. Experiments in cell derived xenograft mouse model also showed that A14 markedly ameliorated the survival rate. CONCLUSIONS: The present study revealed that semisynthetic aurones A14 can effectively protect against T-cell acute lymphoblastic leukemia progression both in vitro and in vivo, indicating the capability of A14 as a promising drug for the treatment of T-cell acute lymphoblastic leukemia.

14.
Front Pharmacol ; 13: 961154, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36091808

RESUMO

Background: Due to the constant mutation of virus and the lack of specific therapeutic drugs, the coronavirus disease 2019 (COVID-19) pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) still poses a huge threat to the health of people, especially those with underlying diseases. Therefore, drug discovery against the SARS-CoV-2 remains of great significance. Methods: With the main protease of virus as the inhibitor target, 9,614 genistein derivatives were virtually screened by LeDock and AutoDock Vina, and the top 20 compounds with highest normalized scores were obtained. Molecular dynamics simulations were carried out for studying interactions between these 20 compounds and the target protein. The drug-like properties, activity, and ADMET of these compounds were also evaluated by DruLiTo software or online server. Results: Twenty compounds, including compound 11, were screened by normalized molecular docking, which could bind to the target through multiple non-bonding interactions. Molecular dynamics simulation results showed that compounds 2, 4, 5, 11, 13, 14, 17, and 18 had the best binding force with the target protein of SARS-CoV-2, and the absolute values of binding free energies all exceeded 50 kJ/mol. The drug-likeness properties indicated that a variety of compounds including compound 11 were worthy of further study. The results of bioactivity score prediction found that compounds 11 and 12 had high inhibitory activities against protease, which indicated that these two compounds had the potential to be further developed as COVID-19 inhibitors. Finally, compound 11 showed excellent predictive ADMET properties including high absorption and low toxicity. Conclusion: These in silico work results show that the preferred compound 11 (ZINC000111282222), which exhibited strong binding to SARS-CoV-2 main protease, acceptable drug-like properties, protease inhibitory activity and ADMET properties, has great promise for further research as a potential therapeutic agent against COVID-19.

15.
Mol Cancer Ther ; 21(5): 740-750, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35247917

RESUMO

Cancer cells undergo significant "metabolic remodeling" to provide sufficient ATP to maintain cell survival and to promote rapid growth. In colorectal cancer cells, ATP is produced by mitochondrial oxidative phosphorylation and by substantially elevated cytoplasmic glucose fermentation (i.e., the Warburg effect). Glucose transporter 1 (GLUT1) expression is significantly increased in colorectal cancer cells, and GLUT1 inhibitors block glucose uptake and hence glycolysis crucial for cancer cell growth. In addition to ATP, these metabolic pathways also provide macromolecule building blocks and signaling molecules required for tumor growth. In this study, we identify a diaminobutoxy-substituted isoflavonoid (DBI-1) that inhibits mitochondrial complex I and deprives rapidly growing cancer cells of energy needed for growth. DBI-1 and the GLUT1 inhibitor, BAY-876, synergistically inhibit colorectal cancer cell growth in vitro and in vivo. This study suggests that an electron transport chain inhibitor (i.e., DBI-1) and a glucose transport inhibitor, (i.e., BAY-876) are potentially effective combination for colorectal cancer treatment.


Assuntos
Neoplasias do Colo , Humanos , Trifosfato de Adenosina , Linhagem Celular Tumoral , Transformação Celular Neoplásica , Neoplasias do Colo/tratamento farmacológico , Glucose , Transportador de Glucose Tipo 1/genética , Glicólise , Pirazóis , Quinolinas , Fatores de Transcrição
16.
Mol Cancer Ther ; 20(10): 1893-1903, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34376582

RESUMO

Developing effective treatments for colorectal cancers through combinations of small-molecule approaches and immunotherapies present intriguing possibilities for managing these otherwise intractable cancers. During a broad-based, screening effort against multiple colorectal cancer cell lines, we identified indole-substituted quinolines (ISQ), such as N7,N7 -dimethyl-3-(1-methyl-1H-indol-3-yl)quinoline-2,7-diamine (ISQ-1), as potent in vitro inhibitors of several cancer cell lines. We found that ISQ-1 inhibited Wnt signaling, a main driver in the pathway governing colorectal cancer development, and ISQ-1 also activated adenosine monophosphate kinase (AMPK), a cellular energy-homeostasis master regulator. We explored the effect of ISQs on cell metabolism. Seahorse assays measuring oxygen consumption rate (OCR) indicated that ISQ-1 inhibited complex I (i.e., NADH ubiquinone oxidoreductase) in the mitochondrial, electron transport chain (ETC). In addition, ISQ-1 treatment showed remarkable synergistic depletion of oncogenic c-Myc protein level in vitro and induced strong tumor remission in vivo when administered together with BI2536, a polo-like kinase-1 (Plk1) inhibitor. These studies point toward the potential value of dual drug therapies targeting the ETC and Plk-1 for the treatment of c-Myc-driven cancers.


Assuntos
Amodiaquina/análogos & derivados , Proteínas de Ciclo Celular/antagonistas & inibidores , Neoplasias Colorretais/tratamento farmacológico , Sinergismo Farmacológico , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Pteridinas/farmacologia , Amodiaquina/farmacologia , Animais , Apoptose , Proliferação de Células , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Feminino , Humanos , Masculino , Camundongos , Camundongos Nus , Proteínas Proto-Oncogênicas c-myc/genética , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto , Quinase 1 Polo-Like
17.
Yi Chuan ; 32(12): 1247-55, 2010 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-21513150

RESUMO

Neuregulin-1 (NRG1), now in a phase II clinical trial, has beneficial effects on heart failure patients through the activation of ErbB2/ErbB4 receptor pair. To decrease the side effect of NRG1 on activating ErbB3, a mutation screen was carried out to get NRG1 mutants, which have more specific binding to ErbB2/ErbB4 receptor pair. Two CHO stable cell lines were constructed, which express ErbB2/ErbB3 or ErbB2/ErbB4 receptor pair, respectively. The ErbB2/ErbB4 cell line showed similar characteristics in ligand-binding activity and the activation of downstream signaling molecules, such as the AKT and PI3K to the primary neonatal rat ventricular myocytes (NRVM), which endogenously expresses ErbB2/ErbB4. Both cell lines have good dose-response. Thirty-one NRG1 mutants were successfully expressed in Escherichia coli and purified. Their ability to stimulate the downstream signaling was measured by detecting AKT phosphorylation. Some mutants showed more specific activation activity in ErbB2/ErbB4 cells. Further study on five of these mutants demonstrated that the change of the activation activity is associated with that of their binding activities to ErbB2/ErbB4 and ErbB2/ErbB3. Four of the candidates are more specific ligands for ErbB2/ErbB4 activation, and thus may serve as more potent drug candidates for heart failure.


Assuntos
Receptores ErbB/metabolismo , Proteínas Mutantes/metabolismo , Mutação , Neuregulina-1/metabolismo , Engenharia de Proteínas/métodos , Receptor ErbB-3/metabolismo , Animais , Células CHO , Cricetinae , Cricetulus , Insuficiência Cardíaca/tratamento farmacológico , Ligantes , Células Musculares/metabolismo , Proteínas Mutantes/genética , Proteínas Mutantes/uso terapêutico , Neuregulina-1/genética , Neuregulina-1/uso terapêutico , Ratos , Receptor ErbB-4 , Especificidade por Substrato , Transfecção
18.
Food Funct ; 11(10): 8837-8851, 2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-32969440

RESUMO

Adipose dysfunction is closely associated with alcoholic liver disease. The impact of mangiferin on ethanol-induced liver injury and the probable underlying molecular mechanism has not been sufficiently addressed. In the present study, mice were subjected to a chronic plus a single binge ethanol feeding to induce liver injury. In addition, the differentiated adipocytes from primary mouse adipocytes were isolated and used for the mechanism studies. Our study demonstrated that mangiferin protects against ethanol induced adipose hyperlipolysis by restoring PDE3B stability, which is associated with activating the AMPK/TBK1 signaling and suppressing the noncanonical NF-κB activation, leading to the reduction of free fatty acid release and the amelioration of ethanol-induced liver injury. Our findings identify that mangiferin ameliorates alcoholic liver injury via suppression of inflammation-induced adipose hyperlipolysis, suggesting that mangiferin might be a potential effective agent for the management of alcoholic liver injury.


Assuntos
Tecido Adiposo/metabolismo , Lipólise/efeitos dos fármacos , Hepatopatias Alcoólicas/tratamento farmacológico , Substâncias Protetoras/farmacologia , Xantonas/farmacologia , Adipócitos/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Etanol/efeitos adversos , Inflamação , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais/efeitos dos fármacos
19.
Sci Rep ; 9(1): 6439, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-31015569

RESUMO

Structure-activity relationships (SAR) in the aurone pharmacophore identified heterocyclic variants of the (Z)-2-benzylidene-6-hydroxybenzofuran-3(2H)-one scaffold that possessed low nanomolar in vitro potency in cell proliferation assays using various cancer cell lines, in vivo potency in prostate cancer PC-3 xenograft and zebrafish models, selectivity for the colchicine-binding site on tubulin, and absence of appreciable toxicity. Among the leading, biologically active analogs were (Z)-2-((2-((1-ethyl-5-methoxy-1H-indol-3-yl)methylene)-3-oxo-2,3-dihydrobenzofuran-6-yl)oxy)acetonitrile (5a) and (Z)-6-((2,6-dichlorobenzyl)oxy)-2-(pyridin-4-ylmethylene)benzofuran-3(2H)-one (5b) that inhibited in vitro PC-3 prostate cancer cell proliferation with IC50 values below 100 nM. A xenograft study in nude mice using 10 mg/kg of 5a had no effect on mice weight, and aurone 5a did not inhibit, as desired, the human ether-à-go-go-related (hERG) potassium channel. Cell cycle arrest data, comparisons of the inhibition of cancer cell proliferation by aurones and known antineoplastic agents, and in vitro inhibition of tubulin polymerization indicated that aurone 5a disrupted tubulin dynamics. Based on molecular docking and confirmed by liquid chromatography-electrospray ionization-tandem mass spectrometry studies, aurone 5a targets the colchicine-binding site on tubulin. In addition to solid tumors, aurones 5a and 5b strongly inhibited in vitro a panel of human leukemia cancer cell lines and the in vivo myc-induced T cell acute lymphoblastic leukemia (T-ALL) in a zebrafish model.


Assuntos
Proteínas de Neoplasias/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Neoplasias da Próstata , Multimerização Proteica/efeitos dos fármacos , Tubulina (Proteína)/metabolismo , Peixe-Zebra/metabolismo , Animais , Benzofuranos/síntese química , Benzofuranos/química , Benzofuranos/farmacologia , Sítios de Ligação , Colchicina , Humanos , Masculino , Camundongos , Camundongos Nus , Células PC-3 , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Cell Signal ; 19(3): 466-71, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16978839

RESUMO

ErbB2, ErbB3 and ErbB4 are members of the Epidermal Growth Factor Receptor (EGFR) sub-family of Receptor Tyrosine Kinases (RTKs). Neuregulin-1 (NRG-1) is a ligand of ErbB3 and ErbB4 receptors. NRG-1-induced ErbB2/ErbB3 or ErbB2/ErbB4 heterodimerization, followed by receptor phosphorylation, plays multiple biological roles. To precisely determine the phosphorylation status of each ErbB receptor in ErbB2/ErbB3 and ErbB2/ErbB4 heterodimers, an immunoprecipitation-recapture of the ErbB receptors was performed to exclude any co-immunoprecipitated heterodimer partners from cells with co-expression of ErbB2/ErbB3, ErbB2/ErbB4, or ErbB2/ErbB4D843N, a kinase-inactive ErbB4 mutant, in which the aspartic acid at 843 (D843) was replaced by an asparagine (N). Here, we provide direct biochemical evidence that ErbB2 was only trans-phosphorylated by ErbB4, but not by ErbB3 or ErbB4D843N. By contrast, ErbB3, ErbB4 and ErbB4D843N were trans-phosphorylated by ErbB2 in the co-transfected cells. Therefore, we conclude that trans-phosphorylation, but not cis-phosphorylation occurred between ErbB2/ErbB3 and ErbB2/ErbB4 heterodimer partners by NRG-1 stimulation.


Assuntos
Neuregulina-1/farmacologia , Receptor ErbB-2/metabolismo , Receptor ErbB-3/metabolismo , Animais , Dimerização , Receptores ErbB , Camundongos , Células NIH 3T3 , Fosforilação , Receptor ErbB-2/genética , Receptor ErbB-3/genética , Receptor ErbB-4
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA