Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nat Mater ; 23(8): 1100-1106, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38777872

RESUMO

Elucidating the mechanism of photoinduced water splitting on TiO2 is important for advancing the understanding of photocatalysis and the ability to control photocatalytic surface reactions. However, incomplete experimental information and complex coupled electron-nuclear motion make the microscopic understanding challenging. Here we analyse the atomic-scale pathways of photogenerated charge carrier transport and photoinduced water dissociation at the prototypical water-rutile TiO2(110) interface using first-principles dynamics simulations. Two distinct mechanisms are observed. Field-initiated electron migration leads to adsorbed water dissociation via proton transfer to a surface bridging oxygen. In the other pathway, adsorbed water dissociation occurs via proton donation to a second-layer water molecule coupled to photoexcited-hole transfer promoted by in-plane surface lattice distortions. Two stages of non-adiabatic in-plane lattice motion-expansion and recovery-are observed, which are closely associated with population changes in Ti3d orbitals. Controlling such highly correlated electron-nuclear dynamics may provide opportunities for boosting the performance of photocatalytic materials.

2.
Phys Rev Lett ; 133(15): 156901, 2024 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-39454146

RESUMO

High harmonic generation (HHG) have received significant attention for the exploration of material properties and ultrafast dynamics. However, the lack of consideration for couplings between HHG and other quasiparticles, such as phonons, has been impeding the understanding of many-body interactions in HHG. Here, we reveal the many-body electron-phonon mechanism in the quasiparticle-coupled strong-field dynamics by investigating the nonadiabatic (NA) coherent-phonon-coupled HHG. Coherent phonons are revealed to effectively affect HHG via the adiabatic band modulation induced by phonon deformation effects and the NA and nonequilibrium distribution of photocarriers in multiple valleys. The adiabatic and NA mechanisms leave their fingerprint via influencing the phonon period and phase delay in the oscillation of HHG intensity, both of which are experimentally measurable. Investigation of these quantities enables the direct probing of the electron-phonon interaction in materials.

3.
Fish Shellfish Immunol ; 144: 109275, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38081443

RESUMO

MicroRNAs play crucial roles in various biological processes, including but not limited to differentiation, development, disease, and immunity. However, their immunoregulatory roles in half-smooth tongue sole are lacking. Our previous studies indicated that miR-722 could target C5aR1 to modulate the complement pathway to alleviate inflammatory response and even affect the mortality after the bacterial infection with Vibrio anguillarum. Driven by the purpose of revealing the underlying mechanisms, in this study, we investigated the effects of miR-722 on the gene expression and alternative splicing (AS) in the liver of half-smooth tongue sole after Vibrio anguillarum infection, with the approach of miR-722 overexpression/silencing and subsequent RNA-seq. Among the different comparisons, the I group (miR-722 inhibitor and V. anguillarum) versus blank control (PBS) exhibited the highest number of differentially expressed genes (DEGs), suggesting that the immune response was overactivated after inhibiting the miR-722. In addition, enrichment analyses were performed to reveal the functions of DEGs and differential AS (DAS) genes, reflecting the enrichment of RNA splicing and immune-related pathways including NF-κB and T cell receptor signaling pathway. Comparing the M group (miR-722 mimic and V. anguillarum) with the negative control (random sequence and V. anguillarum), two immune-related genes, cd48 and mapk8, were differentially expressed, of which mapk8 was also differentially spliced, indicating their importance in the immune response. Furthermore, representative gene analysis was performed, suggesting their corresponding functional changes due to AS. To verify the RNA-seq data, quantitative real-time PCR was employed with twenty pairs of primers for DEGs and DAS events. Overall, our results demonstrated that miR-722 could mediate the transcriptome-wide changes of gene expression and AS in half-smooth tongue sole, and provided insights into the regulatory role of miR-722 in immune responses, laying the foundation for further functional analyses and practical applications in aquaculture.


Assuntos
Doenças dos Peixes , Linguados , MicroRNAs , Vibrioses , Vibrio , Animais , Processamento Alternativo , Vibrio/fisiologia , Transcriptoma , Fígado/metabolismo , Peixes/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Perfilação da Expressão Gênica/veterinária
4.
Phys Rev Lett ; 131(6): 066401, 2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37625067

RESUMO

Resolving the complete electron scattering dynamics mediated by coherent phonons is crucial for understanding electron-phonon couplings beyond equilibrium. Here we present a time-resolved theoretical investigation on strongly coupled ultrafast electron and phonon dynamics in monolayer WSe_{2}, with a focus on the intervalley scattering from the optically "bright" K state to "dark" Q state. We find that the strong coherent lattice vibration along the longitudinal acoustic phonon mode [LA(M)] can drastically promote K-to-Q transition on a timescale of ∼400 fs, comparable with previous experimental observation on thermal-phonon-mediated electron dynamics. Further, this coherent-phonon-driven intervalley scattering occurs in an unconventional steplike manner and further induces an electronic Rabi oscillation. By constructing a two-level model and quantitatively comparing with ab initio dynamic simulations, we uncover the critical role of nonadiabatic coupling effects. Finally, a new strategy is proposed to effectively tune the intervalley scattering rates by varying the coherent phonon amplitude, which could be realized via light-induced nonlinear phononics that we hope will spark experimental investigation.

5.
Fish Shellfish Immunol ; 141: 109043, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37673387

RESUMO

Frequently occurred bacterial diseases have seriously affected the aquaculture industry of half-smooth tongue sole (Cynoglossus semilaevis). Notably, vibriosis, with Vibrio anguillarum as one of the causative pathogens, is the most severe bacterial disease with severe inflammatory response of the host, leading to high mortality rates. In the present study, we explored the relationship between bacterial concentrations and host mortality, inflammatory reaction, and immune response in half-smooth tongue sole after infection with V. anguillarum at different concentrations (Treatment 1, 6.4 × 105 CFU/mL; Treatment 2, 6.4 × 106 CFU/mL). The mortality of Treatment 2 (77.5%) was significantly higher than that of Treatment 1 (10%), corresponding with bacterial concentrations. Although the number of deaths varies, intensive deaths were observed within 24 h post infection (hpi) in both bacterial concentration groups. Histopathological analyses revealed that fish tissues were most severely damaged at 24 or 48 hpi, and Treatment 2 was more severe than Treatment 1. A qRT-PCR-based detection method with virulence factor gene empA was established to quantify the bacterial loads in various tissues, and the bacterial loads were the highest at 24 hpi in Treatment 2, and at 48 hpi in Treatment 1. Additionally, the expression levels of complement genes (C5a, C3, C5, and C6), inflammatory factors (IL-1ß, TNF-α, and IL-10), and other immune-related genes (jak2, NF-κB1, stat3, and tlr3) were increased in various tissues after infection in both treatment groups, with most genes being most expressed at 24 or 48 hpi, and expression levels of inflammatory factors in Treatment 2 were higher than those in Treatment 1. Moreover, the expression of C5a was positively correlated with that of proinflammatory cytokines in both bacterial concentration groups. According to the results of this study, 24-48 hpi was a key node for early vibriosis detection and intervention. Compared with the low mortality of Treatment 1, the mass death of fish in Treatment 2 was suggested to be caused by uncontrolled excessive inflammatory reaction induced by the overactivation of complement system, especially C5a. We believe these results could provide theoretical basis for prevention, evaluation, and treatment of vibrio disease in tongue sole aquaculture, and lay a solid foundation for future functional analyses.

6.
Fish Shellfish Immunol ; 139: 108873, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37271327

RESUMO

The complement system is essential to host defense, but its excessive activation caused by severe pathogen invasion is a driving force in adverse inflammatory. The binding of complement component 5a (C5a) and complement component 5a receptor 1 (C5aR1) is the key to trigger complement-mediated inflammatory response in mammals. However, the role of C5a-C5aR1 axis in fish immune response remains obscure. In this study, the role of C5a-C5aR1 axis of zebrafish (Danio rerio) after serious infection with Aeromonas hydrophila was investigated. C5a and C5aR1 of zebrafish were cloned, with CDS sequences of 228 and 1041 bp, respectively, and they were widely expressed in various tissues with the highest expression in the liver and spleen, respectively. The survival of zebrafish was closely correlated to the dose of A. hydrophila. The cytokine storm occurred at high concentrations of A. hydrophila infection. At 24 h post infection (hpi), the expression of C5a and C5aR1 in the spleen increased 26.8-fold and 9.9-fold in treatment group 1 (TG1, 3.0 × 107 CFU/mL) (P < 0.01), and 4.7-fold and 3.4-fold in treatment group 2 (TG2, 1.0 × 107 CFU/mL) (P < 0.05), respectively. Correspondingly, proinflammatory cytokines interleukin-1ß (IL-1ß), interleukin-8 (IL-8), and interleukin-17 (IL-17) were positively correlated to C5a and C5aR1 at mRNA and protein expression levels. The expression of IL-1ß was significantly increased in the spleen at 6 hpi, with a 599.2-fold and 203.2-fold upregulation in TG1 and TG2 (P < 0.001), respectively. Moreover, after inhibition of C5a-C5aR1 binding treated with C5aR1 antagonist (W-54011), zebrafish showed lower expression of C5a, C5aR1, and cytokines, less intestinal damage, and significantly enhancement of survival (P < 0.05) after A. hydrophila challenge. This study revealed that the inflammatory effect of C5a was achieved by binding to C5aR1 in zebrafish, providing novel insights into using C5a-C5aR1 axis as an effective target to reduce bacterial inflammation and disease in fish.


Assuntos
Aeromonas hydrophila , Peixe-Zebra , Animais , Complemento C5a/metabolismo , Inflamação/genética , Citocinas/genética , Mamíferos/metabolismo
7.
Nano Lett ; 22(12): 4800-4806, 2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35648107

RESUMO

Nonequilibrium electron-phonon coupling (EPC) serves as a dominant interaction in a multitude of transient processes, including photoinduced phase transitions, coherent phonon generation, and possible light-induced superconductivity. Here we use monolayer MoS2 as a prototype to investigate the variation in electron-phonon couplings under laser excitation, on the basis of real-time time-dependent density functional theory simulations. Phonon softening, anisotropic modification of the deformation potential, and enhancement of EPC are observed, which are attributed to the reduced electronic screening and modulated potential energy surfaces by photoexcitation. Furthermore, by tracking the transient deformation potential and nonthermal electronic population, we can monitor the ultrafast time evolution of the energy exchange rate between electrons and phonons upon laser excitation. This work provides an effective strategy to investigate the nonequilibrium EPC and constructs a scaffold for understanding nonequilibrium states beyond the multitemperature models.

8.
Phys Rev Lett ; 128(1): 015702, 2022 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-35061482

RESUMO

The temporal characters of laser-driven phase transition from 2H to 1T^{'} has been investigated in the prototype MoTe_{2} monolayer. This process is found to be induced by fundamental electron-phonon interactions, with an unexpected phonon excitation and coupling pathway closely related to the nonequilibrium relaxation of photoexcited electrons. The order-to-order phase transformation is dissected into three substages, involving energy and momentum scattering processes from optical (A_{1}^{'} and E^{'}) to acoustic phonon modes [LA(M)] in subpicosecond timescale. An intermediate metallic state along the nonadiabatic transition pathway is also identified. These results have profound implications on nonequilibrium phase engineering strategies.

9.
J Food Sci Technol ; 59(5): 1855-1864, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35531398

RESUMO

As the only standard of its kind, GB5009.35-2016 provides the determination of water-soluble synthetic colorants in processed grain products with high starch content for the purpose of food safety risk monitoring. However, it's only applicable to candy products and liquid foods as beverages, but not solid grain products. Extraction is a critical and essential step in the overall analytical process for determination. This paper provides an improved method for extraction of synthetic colorants in food products presenting high starch content. The samples were successively extracted with methanol-water (4:6, v/v) containing 2.7% sodium bicarbonate, and the target analytes were purified by solid phase extraction column. The obtained eluent was concentrated in constant volume, separated by ODS-SP C18 column and determined by diode array detector. The limits of detection were in the range of 2.21 ~ 8.62 ng/mL for 6 synthetic colors. The average recoveries at the spiked levels of 10, 30, 50 µg/kg varied in the range of 79.3 ~ 101.4% with RSD (n = 6) around 0.2 ~ 6.7%. The developed sodium bicarbonate based extraction method was successfully applied to speciation analysis of water soluble azo synthetic colorant in starchy food, such as millet, grits, brown rice, rice flour, cornmeal and cornflakes. Supplementary Information: The online version contains supplementary material available at 10.1007/s13197-021-05199-x.

10.
Front Microbiol ; 15: 1392441, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38706968

RESUMO

Aims: The high salinity of soil, nutrient scarcity, and poor aggregate structure limit the exploitation and utilization of coastal mudflat resources and the sustainable development of saline soil agriculture. In this paper, the effects of applying exogenous organic acids combined with biological substrate on the composition and diversity of soil bacterial community were studied in moderately saline mudflats in Jiangsu Province. Methods: A combination of three exogenous organic acids (humic acid, fulvic acid, and citric acid) and four biological substrates (cottonseed hull, cow manure, grass charcoal, and pine needle) was set up set up on a coastal saline mudflat planted with a salt-tolerant forage grass, sweet sorghum. A total of 120 kg ha-1 of organic acids and 5,000 kg ha-1 of substrates were used, plus two treatments, CK without application of organic acids and substrates and CK0 in bare ground, for a total of 14 treatments. Results: No significant difference was found in the alpha diversity of soil bacterial community among all treatments (p ≥ 0.05), with the fulvic acid composite pine needle (FPN) treatment showing the largest increase in each index. The beta diversity differed significantly (p < 0.05) among all treatments, and the difference between citric acid-grass charcoal (CGC) and CK treatments was greater than that of other treatments. All treatments were effective in increasing the number of bacterial ASVs and affecting the structural composition of the community. Citric acid-cow manure (CCM), FPN, and CGC treatments were found to be beneficial for increasing the relative abundance of Proteobacteria, Chloroflexi, and Actinobacteria, respectively. By contrast, all treatments triggered a decrease in the relative abundance of Acidobacteria. Conclusion: Among the 12 different combinations of exogenous organic acid composite biomass substrates applied to the coastal beach, the CGC treatment was more conducive to increasing the relative abundance of the salt-tolerant bacteria Proteobacteria, Chloroflexi and Actinobacteria, and improving the community structure of soil bacteria. The FPN treatment was more conducive to increase the species diversity of the soil bacterial community and adjust the species composition of the bacterial community.

11.
J Phys Chem Lett ; 14(2): 576-583, 2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36633437

RESUMO

Although ultrafast control of the nonthermally driven ferroelectric transition of paraelectric SrTiO3 was achieved under laser excitation, the underlying mechanism and dynamics of the photoinduced phase transition remain ambiguous. Here, the determinant formation mechanism of ultrafast ferroelectricity in SrTiO3 is traced by nonadiabatic dynamics simulations. That is, the selective excitation of multiple phonons, induced by photoexcited electrons through the strong correlation between electronic excitation and lattice distortion, results in the breaking of the crystal central symmetry and the onset of ferroelectricity. The accompanying population transition between 3dz2 and 3dx2-y2 orbitals excites multiple phonon branches, including the two high-energy longitudinal optical modes, so as to drive the titanium ion away from the center of the oxygen octahedron and generate a metastable ferroelectric phase. Our findings reveal a cooperative electronic and ionic driving mechanism for the laser-induced ferroelectricity that provides new schemes for the optical control of ultrafast quantum states.

12.
Front Plant Sci ; 14: 1163195, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37056508

RESUMO

Introduction: In coastal saline lands, organic matter is scarce and saline stress is high. Exploring the promotion effect of intervention with organic acid from biological materials on soil improvement and thus forage output and determining the related mechanism are beneficial to the potential cultivation and resourceful, high-value utilization of coastal mudflats as back-up arable land. Method: Three exogenous organic acids [humic acid (H), fulvic acid (F), and citric acid (C)] were combined with four kinds of biomass materials [cottonseed hull (CH), cow manure (CM), grass charcoal (GC), and pine needle (PN)] and applied to about 0.3% of medium-salt mudflat soil. The salinity and nutrient dynamics of the soil and the growth and physiological differences of sweet sorghum at the seedling, elongation, and heading stages were observed under different treatments to screen for efficient combinations and analyze the intrinsic causes and influencing mechanisms. Results: The soil salinity, nutrient dynamics, and forage grass biological yield during sweet sorghum cultivation in saline soils differed significantly (p < 0.05) depending on the type of organic acid-biomass composite applied. Citric acid-pine needle composite substantially reduced the soil salinity and increased the soil nutrient content at the seedling stage and improved the root vigor and photosynthesis of sweet sorghum by increasing its stress tolerance, allowing plant morphological restructuring for a high biological yield. The improvement effect of fulvic acid-pine needle or fulvic acid-cow manure composite was manifested at the elongation and heading stages. Discussion: Citric acid-pine needle composite promoted the growth of saline sweet sorghum seedlings, and the effect of fulvic acid-pine needle composite lasted until the middle and late stages.

13.
Artigo em Inglês | MEDLINE | ID: mdl-37327728

RESUMO

Integrins (ITGs) are transmembrane heterodimer receptors with ITGα subunit and ITGß subunit, participating in various physiological processes, including immunity. At present, systematic research on ITGs in teleost is scarce, especially in half-smooth tongue sole (Cynoglossus semilaevis). In this study, a set of 28 ITG genes in half-smooth tongue sole have been identified and characterized. The phylogenetic analysis showed that ITGα and ITGß subunits were respectively classified into five and two clusters, consistent with previous studies. The selection pressure analysis indicated that most of ITG genes were under purifying selection, except for ITGα11b and ITGαL with positive selection. The expression profiles of eight selected ITG genes, including ITGα1, ITGα5, ITGα8, ITGα11, ITGß1, ITGß2, ITGß3, and ITGß8, were analyzed in healthy tissues and after infection with Vibrio anguillarum, revealed their implications in immune response. The study provided a comprehensive characterization and expression analysis of ITG genes in half-smooth tongue sole, setting a solid foundation for further functional studies and promising potential in disease control.


Assuntos
Linguados , Linguado , Vibrioses , Animais , Filogenia , Integrinas/genética , Integrinas/metabolismo , Perfilação da Expressão Gênica , Linguados/genética , Linguados/metabolismo , Vibrioses/genética , Vibrioses/veterinária , Linguado/genética , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo
14.
Sci Adv ; 9(33): eadg3833, 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37585535

RESUMO

Polaron formation is ubiquitous in polarized materials, but severely hampers carrier transport for which effective controlling methods are urgently needed. Here, we show that laser-controlled coherent phonon excitation enables orders of magnitude enhancement of carrier mobility via accelerating polaron transport in a prototypical material, lithium peroxide (Li2O2). The selective excitation of specific phonon modes, whose vibrational pattern directly overlap with the polaronic lattice deformation, can remarkably reduce the energy barrier for polaron hopping. The strong nonadiabatic couplings between the electronic and ionic subsystem play a key role in triggering the migration of polaron, via promoting phonon-phonon scattering in q space within sub-picoseconds. These results extend our understanding of polaron transport dynamics to the nonequilibrium regime and allow for optoelectronic devices with ultrahigh on-off ratio and ultrafast responsibility, competitive with those of state-of-the-art devices fabricated based on free electron transport.

15.
Nat Commun ; 14(1): 1310, 2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36898989

RESUMO

Multiphoton excited luminescence is of paramount importance in the field of optical detection and biological photonics. Self-trapped exciton (STE) emission with self-absorption-free advantages provide a choice for multiphoton excited luminescence. Herein, multiphoton excited singlet/triplet mixed STE emission with a large full width at half-maximum (617 meV) and Stokes shift (1.29 eV) has been demonstrated in single-crystalline ZnO nanocrystals. Temperature dependent steady state, transient state and time-resolved electron spin resonance spectra demonstrate a mixture of singlet (63%) and triplet (37%) mixed STE emission, which contributes to a high photoluminescence quantum yield (60.5%). First-principles calculations suggest 48.34 meV energy per exciton stored by phonons in the distorted lattice of excited states, and 58 meV singlet-triplet splitting energy for the nanocrystals being consistent with the experimental measurements. The model clarifies long and controversial debates on ZnO emission in visible region, and the multiphoton excited singlet/triplet mixed STE emission is also observed.

16.
Int J Biol Macromol ; 252: 126445, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37611685

RESUMO

MicroRNAs (miRNAs) are small non-coding RNAs involved in various biological processes, including immunity. Previously, we investigated the miRNAs of half-smooth tongue sole (Cynoglossus semilaevis) and found that miR-722 (designated Cse-miR-722) was significantly differentially expressed after infection with Vibrio anguillarum, reflecting its importance in immune response. Our preliminary bioinformatic analysis suggested that Cse-miR-722 could target C5aR1 (designated CsC5aR1), which was known to play crucial roles in complement activation and inflammatory response, as a receptor of C5a. However, the underlying mechanisms of their interactions and specific functions in inflammatory and immune response are still enigmas. In this study, we successfully cloned the precursor sequence of Cse-miR-722 (94 bp) and the full length of CsC5aR1 (1541 bp, protein molecular weight 39 kDa). The target gene of Cse-miR-722 was verified as CsC5aR1 by a dual luciferase reporter assay, and Cse-miR-722 was confirmed to regulate CsC5aR1 at the protein level using quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting. The expression of CsC5aR1 and Cse-miR-722 in liver cells and four immune tissues of half-smooth tongue sole changed significantly after LPS stimulation and infection with V. anguillarum. To explore the functional role of Cse-miR-722 in half-smooth tongue sole, we performed both in vitro and in vivo experiments. Cse-miR-722 was observed to affect phagocytosis and respiratory burst activity of macrophages by regulating CsC5aR1 in half-smooth tongue sole. Furthermore, we found that Cse-miR-722 regulated the expression of CsC5aR1, CsC5a, and the inflammatory factors CsIL1-ß, CsIL6, CsIL8, and CsTNF-α both in vitro and in vivo. In addition, Cse-miR-722 reduced mortality and pathological damage. This study clarified the regulatory mechanism of Cse-miR-722 on CsC5aR1 and provided insight into the regulatory roles of Cse-miR-722 in immune responses, laying a theoretical foundation for the feasibility of using miR-722 to prevent and control bacterial diseases in teleost.


Assuntos
Infecções Bacterianas , Doenças dos Peixes , Linguados , MicroRNAs , Vibrioses , Vibrio , Animais , Linguados/genética , Inflamação , MicroRNAs/genética , Proteínas de Peixes/metabolismo
17.
Environ Pollut ; 302: 119022, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35219793

RESUMO

Green tide outbreaks caused by overgrowth of Ulva prolifera in the Yellow Sea of China can cause serious ecological stress with concomitant economic hardships, especially to marine fisheries. In this study, short-term effects (14 days) were evaluated using fresh algae U. prolifera (FU), and a 7-day assessment of the effects of decomposing U. prolifera (DU) algal effluent was conducted to determine the effects on the environmental and intestinal microbiota, intestinal transcriptome and mortality of the commercial marine benthic fish, Japanese flounder (Paralichthys olivaceus). The results revealed that algal degradation altered the microbial community structure of fish farm water and fish intestines and increased the relative abundance of the pathogens Flavobacteriaceae in water and Vibrio in fish intestines. Fish intestinal tissue structure appeared to be damaged, as indicated in pathological sections, and transcriptome analysis showed intestinal inflammation after exposure, which may have caused an increase in fish mortality. The degradation of U. prolifera led to a bloom of potential pathogenic bacteria and the inflammation of fish intestines, which resulted in disease in the flounder population that reduced fish harvests and might pose a potential health threat.


Assuntos
Linguado , Microbioma Gastrointestinal , Microbiota , Ulva , Animais , China , Eutrofização , Transcriptoma
18.
Adv Sci (Weinh) ; 9(2): e2102978, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34766740

RESUMO

Understanding hot carrier dynamics between plasmonic nanomaterials and its adsorbate is of great importance for plasmon-enhanced photoelectronic processes such as photocatalysis, optical sensing and spectroscopic analysis. However, it is often challenging to identify specific dominant mechanisms for a given process because of the complex pathways and ultrafast interactive dynamics of the photoelectrons. Here, using CO2 reduction as an example, the underlying mechanisms of plasmon-driven catalysis at the single-molecule level using time-dependent density functional theory calculations is clearly probed. The CO2 molecule adsorbed on two typical nanoclusters, Ag20 and Ag147 , is photoreduced by optically excited plasmon, accompanied by the excitation of asymmetric stretching and bending modes of CO2 . A nonlinear relationship has been identified between laser intensity and reaction rate, demonstrating a synergic interplay and transition from indirect hot-electron transfer to direct charge transfer, enacted by strong localized surface plasmons. These findings offer new insights for CO2 photoreduction and for the design of effective pathways toward highly efficient plasmon-mediated photocatalysis.

19.
Front Plant Sci ; 12: 784251, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35185950

RESUMO

The response of root development and nodule formation of the manure crop Chinese milk vetch to different levels of soil moisture and phosphorous (P) fertilizer remains unclear. In this study, a pot experiment was performed to trace the root growth and nodule formation of Chinese milk vetch at the seedling, branching and full-flowering stages, under various soil moisture gradients [25% (W1), 50% (W2), 75% (W3), and 100% (W4) of the maximum field water-holding capacity] and P levels [0 (P0), 30 (P1), 60 (P2), and 90 (P3) kg hm-2]. The root/shoot ratio, root vitality, number of nodules, nodule weight, and nitrogenase activity were affected remarkably by soil moisture or the level of added P across the whole stage. Differences were found in the interaction effect between soil moisture and added P on the characteristic indices of the root and nodule at the different growth stages. There were obvious differences in root activity and nitrogenase activity at seedling stage, but no evident differences were found in other indices. Certain differences were also found in the indicators mentioned above at the branching stage. W1P0 and W2P0 showed the highest root/shoot ratio, W2P2 and W3P2 resulted in the highest root activity; W3P3 and W3P2 had the highest number and weight of nodules; and W3P2, W2P2, and W3P1 had higher nitrogenase activity than the other treatments at the full-flowering stage. The application of P at 60 kg hm-2 and the relative soil moisture of 75% was the best P-water combination suitable for the root development, nodule formation, and nitrogen fixation of Chinese milk vetch. This study will provide a theoretical basis for the production of this plant by managing the synergistic interaction between P fertilizer and soil moisture.

20.
J Phys Chem Lett ; 12(28): 6667-6675, 2021 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-34255528

RESUMO

In order to search for optimal one-dimensional (1D) superconductors with a high transition temperature (Tc), we performed high-throughput computation on the phonon dispersion, electron-phonon coupling (EPC), and superconducting properties of (5,0), (3,3), and element-doped (3,3) carbon nanotubes (CNTs) based on first-principles calculations. We find that the CNT (5,0) is superconductive with Tc of 7.9 K, while the (3,3) CNT has no superconductivity. However, by high-throughput screening of about 50 elements in the periodic table, we identified that 14 elemental dopants can make the (3,3) CNT dynamically stable and superconducting. The high Tc ≈ 28 K suggests that the Si-doped (3,3) CNT is an excellent one-dimensional (1D) superconductor. In addition, the Al-, In-, and La-doped (3,3) CNTs are also great 1D superconductor candidates with a Tc of about 18, 17, and 29 K, respectively. These results may inspire the synthesis and discovery of optimal high-Tc 1D superconductors experimentally.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA