Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(45): e202412408, 2024 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-39073292

RESUMO

Photocatalytic CO2 reduction to value-added fuels displays an attractive scenario to enhance energy supply and reduce global warming. We report herein the confinement synthesis of polymeric carbon nitride (PCN) incorporating with Cu single atoms (CuSAs) inside the crystalline UiO-66-NH2, which combines the merits of heterojunction photocatalysis and single-atom catalysis (SAC) to achieve high-performance CO2-to-CH3OH conversion. A series of spectral studies displays the formation of CuSAs@PCN inside the crystalline UiO-66-NH2. Remarkably, the ternary composite shows an excellent photocatalytic turnover frequency of 4.15 mmol ⋅ h-1 ⋅ g-1 for CO2-to-CH3OH conversion. Theoretical and experimental studies demonstrate the doping of CuSAs, as well as the formation of type-II heterojunction, are causal factors to achieve CH3OH generation. The study provides new insights designing high-performance photocatalyst for CO2 conversion to fuels at atomic scale.

2.
Nanotechnology ; 33(11)2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-34852335

RESUMO

In this paper, Z-scheme Bi2MoO6/CNTs/g-C3N4composite photocatalysts were prepared through a simple hydrothermal method. The analysis was performed by XRD, FT-IR, SEM, EDS, TEM, HRTEM, XPS, BET, UV-Vis diffuse reflectance and PL spectrums. Various analyses show that CNTs not only act as excellent charge transfer bridges, but also enable a formation of the Z-scheme of charge transfer mechanism between Bi2MoO6and g-C3N4. This process not only effectively isolates electrons and holes, but also prolongs electron-hole pair lifetimes, resulting in a substantial improvement in the photocatalytic performance of the composite photocatalyst. Best photocatalytic degradation performance was shown by Bi2MoO6/CNTs/g-C3N4composite photocatalyst under simulated sunlight, while the composite photocatalyst still maintained extremely high degradation performance in cycling tests.

3.
Nanoscale Res Lett ; 12(1): 483, 2017 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-28798992

RESUMO

The feather-like hierarchical zinc oxide (ZnO) was synthesized via successive ionic layer adsorption and reaction without any seed layer or metal catalyst. A possible growth mechanism is proposed to explain the forming process of ZnO feather-like structures. Meanwhile, the photo-electronic performances of the feather-like ZnO have been investigated with the UV-vis-NIR spectroscopy, I-V and I-tmeasurements. The results indicate that feather-like ZnO hierarchical structures have good anti-reflection and excellent photo-sensitivity. All results suggest that the direct growth processing of novel feather-like ZnO is envisaged to have promising application in the field of photo-detector devices.

4.
Colloids Surf B Biointerfaces ; 135: 261-266, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26263214

RESUMO

We investigate the interaction of trypsin with glutathione-stabilized Au nanoparticles (NPs) using fluorescence, synchronous fluorescence and ultraviolet (UV) absorption spectroscopy. We find that trypsin binds strongly to the Au NPs with a static quenching mechanism, and that the interaction is characteristic of positive cooperative binding. Furthermore, we determine the binding constants and the thermodynamic parameters, which suggest that the main binding forces between the glutathione-stabilized Au NPs and trypsin are electrostatic interactions and hydrogen bonding. Analysis of UV-vis absorption spectra suggests that aggregation of the Au NPs occurs in the trypsin/Au NPs system, which significantly alters the conformation of the protein.


Assuntos
Glutationa/química , Ouro/química , Nanopartículas Metálicas/química , Tripsina/química , Ligação Proteica , Conformação Proteica , Soluções , Termodinâmica , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA