Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Org Biomol Chem ; 22(35): 7173-7179, 2024 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-39157932

RESUMO

Fluorescence imaging has revolutionized the visualization of cellular structures and biomolecules due to its non-invasive nature and high sensitivity. Chromenoquinoline (CQ)-based dyes offer promising optical properties, yet their widespread application is hindered by aggregation-caused quenching (ACQ). In contrast, J-aggregates, characterized by distinctive photophysical properties, present a solution to ACQ. Here, we introduce a novel platform employing chromenoquinoline-benzimidazole (CQ-BI) dyes, capable of forming J-aggregates, for dual-color cellular imaging. The incorporation of a methyl group into the benzimidazole moiety enhances J-aggregate formation, leading to robust emission in both dilute solutions and aggregated states. Our study demonstrates that methyl moiety-modified CQ-BI derivatives enable simultaneous imaging of mitochondria and lipid droplets in living cells. This work underscores the potential of CQ-BI dyes for dual-channel fluorescence imaging, leveraging the unique properties of J-aggregation.


Assuntos
Benzimidazóis , Corantes Fluorescentes , Imagem Óptica , Quinolinas , Benzimidazóis/química , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Humanos , Quinolinas/química , Quinolinas/síntese química , Células HeLa , Estrutura Molecular , Mitocôndrias/química , Mitocôndrias/metabolismo , Cor , Benzopiranos/química , Benzopiranos/síntese química
2.
Small ; 17(3): e2006666, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33350056

RESUMO

Unbiased photoelectrochemical water splitting for the promising InGaN nanorods photoelectrode is highly desirable, but it is practically hindered by the serious recombination of charge carrier in bulk and surface of InGaN nanorods. Herein, an unbiased Z-scheme InGaN nanorods/Cu2 O nanoparticles heterostructured system with boosted interfacial charge transfer is constructed for the first time. The introduced Cu2 O nanoparticles pose double-sided effect on photoelectrochemical (PEC) performance of InGaN nanorods, which enables a robust hybrid structure and induces weakened light absorption capability simultaneously. As a result, the optimized InGaN/Cu2 O-1.5C photoelectrode with the uniform morphology exhibits an enhanced photocurrent density of ≈170 µA cm-2 at 0 V versus Pt, with 8.5-fold enhancement compared with pure InGaN nanorods. Comprehensive investigations into experimental results and theoretical calculations reveal that the electrons accumulation and holes depletion of Cu2 O facilitate to form a typical Z-scheme band alignment, thus providing a large photovoltage to drive unbiased water splitting and enhancing the stability of Cu2 O. This work provides a novel and facile strategy to achieve InGaN nanorods and other catalyst-based PEC water splitting without external bias, and to relieve the bottlenecks of charge transfer dynamics at the electrode bulk and electrode/electrolyte interface by constructing Z-scheme heterostructure.

3.
Chemistry ; 27(6): 2104-2111, 2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-33174628

RESUMO

A general and simple strategy is realized for the first time for the preparation of metal sulfide (Mx Sy ) nanoparticles immobilized into N/S co-doped carbon (NSC) through a one-step pyrolysis method. The organic ligand 1,5-naphthalenedisulfonic acid in the metal-organic framework (MOF) precursor is used as a sulfur source, and metal ions are sulfurized in situ to form Mx Sy nanoparticles, resulting in the formation of Mx Sy /NSC (M=Fe, Co, Cu, Ni, Mn, Zn) composites. Benefiting from the Mx Sy nanoparticles and conductive carbon, a synergistic effect of the composite is achieved. For instance, the composite of Fe7 S8 /NSC as an anode displays excellent long-term cycling stability in lithium/sodium ion batteries. At 5 A g-1 , large capacities of 645 mA h g-1 and 426.6 mA h g-1 can be retained after 1500 cycles for the lithium-ion battery and after 1000 cycles for the sodium-ion battery, respectively.

4.
Langmuir ; 37(7): 2349-2354, 2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33556236

RESUMO

Li1.5Al0.5Ge1.5(PO4)3 (LAGP)-PEO composite electrolytes are unstable in LiMn2O4. In addition, the discharge platform potential (2.8 and 4.0 V) difference of LiMn2O4 is relatively large, whereas the discharge platform potential (3.5 V) of LiFePO4 is between 2.8 and 4.0 V. Thus, LiMn2O4 and LiFePO4 can be compounded together to reduce the material platform voltage difference and obtain the advantages of both materials at the same time. Here, LiMn2O4/LiFePO4 composite cathodes were applied in solid-state batteries. LAGP-PEO(LiTFSI) was used as the electrolyte. The Li/composite cathode battery using composite electrolytes has a reversible capacity of 192.8 mAh g-1 at 50 °C and 0.1 C. It possesses favorable rate performance and exhibits very good cycling stability. In addition, the composite electrolytes can prevent the further occurrence of the Jahn-Teller effect. Meanwhile, the charge-transfer resistance slightly decreases in 10 cycles. The excellent capacity retention of the battery is connected with the excellent electrochemical stability and the well-interfaced contacts of the composite electrolytes with electrodes.

5.
Nano Lett ; 20(4): 2871-2878, 2020 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-32186887

RESUMO

Inorganic solid-state electrolyte (SSE) has offered a promising option for the safe rechargeable Li metal batteries. However, the solid-solid interfacial incompatibility greatly hampers the practical use. The interface becomes even worse during repeated Li plating/stripping, especially under high current density and long cycling operation. To promise an intimate contact and uniform Li deposition during cycling, we herein demonstrate a stress self-adapted Li/Garnet interface by integrating Li foil with a hyperelastic substrate. Consecutive and conformal physical contact was ensured at Li/Garnet interface during Li plating/stripping, therefore dissipating the localized stress, suppressing Li dendrite formation, and preventing Garnet cracks. Record long cycling life over 5000 cycles was achieved with the ultrasmall hysteresis of 55 mV at high current density of 0.2 mA cm-2. Our strategy provides a new way to stabilize Li/Garnet interface from the perspective of anode mechanical regulation and paves the way for the next generation solid-state Li metal batteries.

6.
Angew Chem Int Ed Engl ; 60(25): 14091-14099, 2021 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-33830583

RESUMO

Light-emitting chiral carbonized polymer dots (Ch-CPDs) are attracting great interest because of their extraordinary photonic properties, but modulating their band-gap emission, especially at long wavelength, and maintaining their chiral structure to achieve multicolor, high-emission Ch-CPDs remains challenging. Reported here for the first time is the synthesis of red- and multicolor-emitting Ch-CPDs using the common precursors L-/D-tryptophan and o-phenylenediamine, and a solvothermal approach at one temperature. The quantum yield of the Ch-CPDs was between 31 % and 54 %. Supramolecular self-assembly provided multicolor-emitting Ch-CPDs showing novel circularly polarized luminescence, with the highest dissymmetric factor (glum ) of 1×10-2 . Importantly, circularly polarized white-emitting CPDs were fabricated for the first time by tuning the mixing ratio of the three colored Ch-CPDs in a gel. This strategy affords exciting opportunities for designing functional chiroptical materials.

7.
Anal Chem ; 92(7): 5134-5142, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32122121

RESUMO

As two important reactive oxygen species, hydrogen peroxide (H2O2) and hypochlorous acid (HClO) play vital roles in many physiological and pathological processes. However, the relationship between these two species is seldom investigated, in part, because of the lack of robust molecular tools that can simultaneously visualize HClO and H2O2 in biosystems. In this work, we present a design strategy to construct a single fluorescent probe that can detect H2O2 and HClO by simultaneously monitoring two distinct detection channels. In the design, one phenothiazine-based coumarin serves as a chromophore and sensor for HClO, while a second coumarin precursor containing a boronate ester acts as a sensor for H2O2. After a head-to-head screening of three candidates differing in their coumarin precursor moieties, probe CSU1 was found to have the optimal characteristics. As shown experimentally, it is able to detect them selectively and sensitively to generate distinct fluorescence signals and patterns in living cells. Furthermore, the endogenous generation of HClO from H2O2 and Cl- catalyzed by myeloperoxidase enzyme in living cells can be clearly monitored by the probe. These studies demonstrate the potential of the probe as a powerful tool to investigate the interplay of HClO and H2O2 in oxidative stress.


Assuntos
Corantes Fluorescentes/química , Peróxido de Hidrogênio/análise , Ácido Hipocloroso/análise , Sobrevivência Celular/efeitos dos fármacos , Corantes Fluorescentes/farmacologia , Humanos , Peróxido de Hidrogênio/metabolismo , Ácido Hipocloroso/metabolismo , Células MCF-7 , Estrutura Molecular , Imagem Óptica , Peroxidase/metabolismo , Células Tumorais Cultivadas
8.
Acc Chem Res ; 52(11): 3223-3232, 2019 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-31657541

RESUMO

With the increasing diversification of portable electronics and large-scale energy storage systems, conventional lithium-ion batteries (LIBs) with graphite anodes are now approaching their theoretical limits. Lithium metal, as the "Holy Grail" electrode for next-generation rechargeable batteries, is being revisited to meet the booming demand for high energy density electrodes due to its ultrahigh theoretical specific capacity and negative redox potential. Nevertheless, typical issues like notorious dendrite growth still hamper the bulk application of Li metal anodes. Dendrite growth renders increased surface area of the lithium metal, causing persistent depletion of the electrolyte and active materials, facilitating catastrophic failure of the battery, and even inducing fatal safety hazards. The consequences become more serious during operation at high current densities and over long cycling life. Therefore, it is urgent to suppress and even eliminate dendrite formation during the Li plating/stripping process. This Account highlights several innovative strategies for dendrite suppression, dendrite regulation, and dendrite elimination from the perspective of interface energy and bulk stresses. First, we review the fundamental mechanism of dendrite formation and growth in Li metal anodes. We show that the dendrite morphology could be substantially ameliorated, in theory, by homogenizing the electric field distribution, lowering the Li ion concentration gradient, and facilitating mechanical blocking. Next, we address the problem of dendrite suppression by applying two-dimensional (2D) materials to Li metal systems and preventing dendrite penetration through stress release and mechanical blocking. Graphene with a high specific area and vermiculite sheets (VSs) with a large physical rigidity were demonstrated to be efficacious in reinforcing Li anodes and polymer electrolytes separately. However, Li dendrite growth is a continuous process and remains inevitable with increasing current density and cycling life. Instead of suppressing dendrite growth, we focus on how to regulate homogeneous Li dendrite formation and growth. Dendrite regulation means to allow dendrite growth but take steps to transform it into Li with a smooth morphology. We introduce two main strategies to regulate Li growth: (i) guiding Li nucleation and (ii) controlling the Li growth pathways and directions. These processes greatly rely on the interface energy between the substrate and Li atoms. Elimination of the dendrites, which is the most formidable challenge for dendrite control, can also be achieved by dynamically engineering the force, such as deflecting the electric field by Lorentz force in a magnetic field, enhancing the integrated yield stress by the design of bulk nanostructured materials, and reducing the lateral Li diffusion barrier by a biomimetic co-deposition process. Solutions to the challenges of dendrite control in Li metal anodes can provide safe next-generation rechargeable lithium metal batteries that have a long cycling life. We also hope that our strategies presented in this Account can offer promise for other metal batteries.

9.
Angew Chem Int Ed Engl ; 58(19): 6200-6206, 2019 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-30715775

RESUMO

Progress in lithium-metal batteries is severely hindered by lithium dendrite growth. Lithium is soft with a mechanical modulus as low as that of polymers. Herein we suppress lithium dendrites by forming soft-hard organic-inorganic lamella reminiscent of the natural sea-shell material nacres. We use lithium as the soft segment and colloidal vermiculite sheets as the hard inorganic constituent. The vermiculite sheets are highly negatively charged so can absorb Li+ then be co-deposited with lithium, flattening the lithium growth which remains dendrite-free over hundreds of cycles. After Li+ ions absorbed on the vermiculite are transferred to the lithium substrate, the vermiculite sheets become negative charged again and move away from the substrate along the electric field, allowing them to absorb new Li+ and shuttling to and from the substrate. Long term cycling of full cells using the nacre-mimetic lithium-metal anodes is also demonstrated.

10.
Small ; 14(37): e1801423, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30047235

RESUMO

Rechargeable batteries are regarded as the most promising candidates for practical applications in portable electronic devices and electric vehicles. In recent decades, lithium metal batteries (LMBs) have been extensively studied due to their ultrahigh energy densities. However, short lifespan and poor safety caused by uncontrollable dendrite growth hinder their commercial applications. Besides, a clear understanding of Li nucleation and growth has not yet been obtained. In this Review, the failure mechanisms of Li metal anodes are ascribed to high reactivity of lithium, virtually infinite volume changes, and notorious dendrite growth. The principles of Li deposition nucleation and early dendrite growth are discussed and summarized. Correspondingly, four rational strategies of controlling nucleation are proposed to guide Li nucleation and growth. Finally, perspectives for understanding the Li metal deposition process and realizing safe and high-energy rechargeable LMBs are given.

11.
Angew Chem Int Ed Engl ; 57(46): 15028-15033, 2018 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-30199139

RESUMO

Li metal is considered to be an ultimate anode for metal batteries owing to its extremely high theoretical capacity and lowest potential. However, numerous issues such as short lifespan and infinite volume expansion caused by the dendrite growth during Li plating/stripping hinder its practical usage. These challenges become more grievous under high current densities. Herein, 3D porous MXene aerogels are proposed as scaffolds for high-rate Li metal anodes using Ti3 C2 as an example. With high metallic electron conductivity, fast Li ion transport capability, and abundant Li nucleation sites, such scaffolds could deliver high cycling stability and low overpotential at current density up to 10 mA cm-2 . High rate performance is also demonstrated in full cells with LiFePO4 as cathodes. This work provides a new type of scaffolds for Li metal anodes and paves the way for the application of non-graphene 2D materials toward high energy density Li metal batteries.

12.
Anal Chem ; 89(13): 7038-7045, 2017 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-28553716

RESUMO

A novel lysosome-targeting ratiometric fluorescent probe (CQ-Lyso) based on the chromenoquinoline chromorphore has been developed for the selective and sensitive detection of intracellular pH in living cells. In acidic media, the protonation of the quinoline ring of CQ-Lyso induces an enhanced intramolecular charge transfer (ICT) process, which results in large red-shifts in both the absorption (104 nm) and emission (53 nm) spectra which forms the basis of a new ratiometric fluorescence pH sensor. This probe efficiently stains lysosomes with high Pearson's colocalization coefficients using LysoTrackerDeep Red (0.97) and LysoTrackerBlue DND-22 (0.95) as references. Importantly, we show that CQ-Lyso quantitatively measures and images lysosomal pH values in a ratiometric manner using single-wavelength excitation.


Assuntos
Benzopiranos/química , Corantes Fluorescentes/química , Lisossomos/metabolismo , Quinolinas/química , Benzopiranos/síntese química , Benzopiranos/efeitos da radiação , Benzopiranos/toxicidade , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/efeitos da radiação , Corantes Fluorescentes/toxicidade , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Luz , Microscopia Confocal , Microscopia de Fluorescência , Quinolinas/síntese química , Quinolinas/efeitos da radiação , Quinolinas/toxicidade
13.
Anal Chem ; 88(7): 3638-46, 2016 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-26911923

RESUMO

Glutathione (GSH), cysteine (Cys), and homocysteine (Hcy) are small biomolecular thiols that are present in all cells and extracellular fluids of healthy mammals. It is well-known that each plays a separate, critically important role in human physiology and that abnormal levels of each are predictive of a variety of different disease states. Although a number of fluorescence-based methods have been developed that can detect biomolecules that contain sulfhydryl moieties, few are able to differentiate between GSH and Cys/Hcy. In this report, we demonstrate a broadly applicable approach for the design of fluorescent probes that can achieve this goal. The strategy we employ is to conjugate a fluorescence-quenching 7-nitro-2,1,3-benzoxadiazole (NBD) moiety to a selected fluorophore (Dye) through a sulfhydryl-labile ether linkage to afford nonfluorescent NBD-O-Dye. In the presence of GSH or Cys/Hcy, the ether bond is cleaved with the concomitant generation of both a nonfluorescent NBD-S-R derivative and a fluorescent dye having a characteristic intense emission band (B1). In the special case of Cys/Hcy, the NBD-S-Cys/Hcy cleavage product can undergo a further, rapid, intramolecular Smiles rearrangement to form a new, highly fluorescent NBD-N-Cys/Hcy compound (band B2); because of geometrical constraints, the GSH derived NBD-S-GSH derivative cannot undergo a Smiles rearrangement. Thus, the presence of a single B1 or double B1 + B2 signature can be used to detect and differentiate GSH from Cys/Hcy, respectively. We demonstrate the broad applicability of our approach by including in our studies members of the Flavone, Bodipy, and Coumarin dye families. Particularly, single excitation wavelength could be applied for the probe NBD-OF in the detection of GSH over Cys/Hcy in both aqueous solution and living cells.


Assuntos
4-Cloro-7-nitrobenzofurazano/análogos & derivados , 4-Cloro-7-nitrobenzofurazano/química , Cisteína/análise , Corantes Fluorescentes/química , Glutationa/análise , Homocisteína/análise , Compostos de Boro/química , Cumarínicos/química , Flavonas/química , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Microscopia Confocal , Imagem Óptica , Titulometria
14.
Org Biomol Chem ; 13(32): 8663-8, 2015 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-26177153

RESUMO

4-(Benzothiazol-2-yl)-3-hydroxybenzaldehyde, probe 1, has been developed as a ratiometric fluorescent probe for the sensitive and selective detection of sulfur dioxide with a fast response time (within seconds). This probe itself exhibited a yellow emission (λmaxem = 563 nm) with a 186 nm Stokes shift. Upon treatment with sulfite anions, this probe instantaneously displayed a blue emission (λmaxem = 467 nm) with a 133 nm Stokes shift. The large Stokes shifts and absorption spectral overlap of probe 1 both in the absence and in the presence of SO3(2-)/HSO3(-) allow the fluorescence detection under single wavelength excitation. Importantly, this ratiometric probe was successfully demonstrated for the imaging of intracellular sulfite anions in living cells.


Assuntos
Benzaldeídos/química , Corantes Fluorescentes/química , Sulfitos/análise , Dióxido de Enxofre/análise , Células Cultivadas , Corantes Fluorescentes/síntese química , Humanos , Estrutura Molecular
15.
Anal Chem ; 86(5): 2521-5, 2014 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-24502339

RESUMO

Previous reports of fluorescent sensors for alcohols based on charge-transfer character of their excited state are based on mono-, di-, and tetra-phosphonate cavitands, which are capable of selecting analytes through shape/size selection and various specific H-bonding, CH-π, and cation-dipole interactions. To contrast, color changes based on absorption properties of the ground state are more suitable for direct observation with the naked eye. Three sensitive and selective colorimetric sensors for C1-C4 alcohols have been developed on the basis of alcohol-mediated ground-state intramolecular proton transfer. Reverse proton transfer induced by water achieves a fully reversible reaction. In addition, the solvent color indicates alcohol concentration.

16.
Spectrochim Acta A Mol Biomol Spectrosc ; 316: 124312, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38688210

RESUMO

The ubiquity of diverse material entities in environmental matrices renders the deployment of unifunctional fluorescent indicators inadequate. Consequently, this study introduces a ratiometric dual-emission fluorescent sensor (Probe CP), synthesized by conjugating phenothiazine coumarin to hydroxycoumarin through a piperazine linker for concurrent detection of HClO and H2S. Upon interaction with HClO, the phenothiazine unit's sulfur atom undergoes oxidation to sulfoxide, facilitating a shift from red to green fluorescence in a ratiometric manner. Concurrently, at the opposite terminus of Probe CP, 2,4-dinitroanisole serves as the reactive moiety for H2S recognition; it restores the blue emission characteristic of 7-hydroxycoumarin while maintaining the red fluorescence emanating from phenothiazine coumarin as an internal standard for ratio-based assessment. Exhibiting elevated specificity and sensitivity coupled with minimal detection thresholds (0.0506 µM for HClO and 1.7292 µM for H2S) alongside rapid equilibration periods (3 min for HClO and half an hour for H2S), this sensor was efficaciously employed in cellular environments and within zebrafish models as well as imaging applications pertaining to alcohol-induced hepatic injury in murine subjects.


Assuntos
Cumarínicos , Corantes Fluorescentes , Sulfeto de Hidrogênio , Fenotiazinas , Peixe-Zebra , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Animais , Fenotiazinas/química , Fenotiazinas/síntese química , Cumarínicos/química , Cumarínicos/síntese química , Sulfeto de Hidrogênio/análise , Camundongos , Espectrometria de Fluorescência/métodos , Humanos
17.
J Am Chem Soc ; 135(11): 4450-6, 2013 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-23448508

RESUMO

Rechargeable lithium metal batteries are considered the "Holy Grail" of energy storage systems. Unfortunately, uncontrollable dendritic lithium growth inherent in these batteries (upon repeated charge/discharge cycling) has prevented their practical application over the past 40 years. We show a novel mechanism that can fundamentally alter dendrite formation. At low concentrations, selected cations (such as cesium or rubidium ions) exhibit an effective reduction potential below the standard reduction potential of lithium ions. During lithium deposition, these additive cations form a positively charged electrostatic shield around the initial growth tip of the protuberances without reduction and deposition of the additives. This forces further deposition of lithium to adjacent regions of the anode and eliminates dendrite formation in lithium metal batteries. This strategy may also prevent dendrite growth in lithium-ion batteries as well as other metal batteries and transform the surface uniformity of coatings deposited in many general electrodeposition processes.

18.
Adv Mater ; 35(35): e2302872, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37204426

RESUMO

Lithium metal batteries (LMBs) can double the energy density of lithium-ion batteries. However, the notorious lithium dendrite growth and large volume change are not well addressed, especially under deep cycling. Here, an in-situ mechanical-electrochemical coupling system is built, and it is found that tensile stress can induce smooth lithium deposition. Density functional theory (DFT) calculation and finite element method (FEM) simulation confirm that the lithium atom diffusion energy barrier can be reduced when the lithium foils are under tensile strain. Then tensile stress is incorporated into lithium metal anodes by designing an adhesive copolymer layer attached to lithium in which the copolymer thinning can yield tensile stress to the lithium foil. Elastic lithium metal anode (ELMA) is further prepared via introducing a 3D elastic conductive polyurethane (CPU) host for the copolymer-lithium bilayer to release accumulated internal stresses and resist volume variation. The ELMA can withstand hundreds of compression-release cycles under 10% strain. LMBs paired with ELMA and LiNi0.8 Co0.1 Mn0.1 O2 (NCM811) cathode can operate beyond 250 cycles with 80% capacity retention under practical condition of 4 mAh cm-2 cathode capacity, 2.86 g Ah-1 electrolyte-to-capacity ratio (E/C) and 1.8 negative-to-cathode capacity ratio (N/P), five times of the lifetime using lithium foils.

19.
Spectrochim Acta A Mol Biomol Spectrosc ; 303: 123256, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37579661

RESUMO

Hypochlorous acid (HClO) is a reactive oxygen species and a relatively strong antibacterial substance in the immune defense system. The normal concentration of HClO in the human body is approximately 200 µM, and its high concentration can cause tissue damage and some diseases. Herein, a chromenoquinoline-based ratiometric fluorescent probe was developed to detect and quantify HClO. The developed Probe 1 exhibited the advantages of large Stokes shift (137 nm), high synthetic yield (84.7 %), simple synthesis method, short response time (<4 min), low detection limit (5.1 nM), and low toxicity. The probe was successfully validated in live cells and zebrafish.


Assuntos
Corantes Fluorescentes , Peixe-Zebra , Animais , Humanos , Ácido Hipocloroso
20.
Crit Rev Anal Chem ; : 1-36, 2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35639641

RESUMO

Reactive oxygen species (ROS) play an important role in living activities as signaling molecules that regulate the living activities of organisms. There are many types of ROS, mainly including hydrogen peroxide (H2O2), hypochlorous acid (HOCl), hydroxyl radical (•OH), peroxyl radical (ROO•), singlet oxygen (1O2), peroxynitrite (ONOO-) and superoxide anion radical (O2-•) etc. Existing studies have shown that changes in ROS levels are closely associated with the development of many diseases, such as inflammation, cancer, cardiovascular disease, and neurodegenerative damage. Small molecule fluorescent probes have been widely used in biology, pathology and medical diagnosis due to their advantages of noninvasive, high sensitivity and in vivo real-time detection. It is extremely important to better apply small-molecule fluorescent probes to detect ROS levels in organisms to achieve early diagnosis of diseases and assessment of therapeutic conditions. This work focuses on summarizing the representative applications of some fluorescent probes in ROS disease models in recent years. This article focuses on summarizing the construction methods of various ROS-related disease models, and classifying and analyzing the basic ideas and methods of fluorescent probes applied to disease models according to the characteristics of various diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA