Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
1.
Plant Cell ; 36(4): 919-940, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38180963

RESUMO

Soil salinity results in oxidative stress and heavy losses to crop production. The S-acylated protein SALT TOLERANCE RECEPTOR-LIKE CYTOPLASMIC KINASE 1 (STRK1) phosphorylates and activates CATALASE C (CatC) to improve rice (Oryza sativa L.) salt tolerance, but the molecular mechanism underlying its S-acylation involved in salt signal transduction awaits elucidation. Here, we show that the DHHC-type zinc finger protein DHHC09 S-acylates STRK1 at Cys5, Cys10, and Cys14 and promotes salt and oxidative stress tolerance by enhancing rice H2O2-scavenging capacity. This modification determines STRK1 targeting to the plasma membrane or lipid nanodomains and is required for its function. DHHC09 promotes salt signaling from STRK1 to CatC via transphosphorylation, and its deficiency impairs salt signal transduction. Our findings demonstrate that DHHC09 S-acylates and anchors STRK1 to the plasma membrane to promote salt signaling from STRK1 to CatC, thereby regulating H2O2 homeostasis and improving salt stress tolerance in rice. Moreover, overexpression of DHHC09 in rice mitigates grain yield loss under salt stress. Together, these results shed light on the mechanism underlying the role of S-acylation in RLK/RLCK-mediated salt signal transduction and provide a strategy for breeding highly salt-tolerant rice.


Assuntos
Oryza , Tolerância ao Sal , Tolerância ao Sal/genética , Oryza/metabolismo , Peróxido de Hidrogênio/metabolismo , Homeostase , Dedos de Zinco , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
2.
Plant Cell ; 35(9): 3604-3625, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37325884

RESUMO

Catalase (CAT) is often phosphorylated and activated by protein kinases to maintain hydrogen peroxide (H2O2) homeostasis and protect cells against stresses, but whether and how CAT is switched off by protein phosphatases remains inconclusive. Here, we identified a manganese (Mn2+)-dependent protein phosphatase, which we named PHOSPHATASE OF CATALASE 1 (PC1), from rice (Oryza sativa L.) that negatively regulates salt and oxidative stress tolerance. PC1 specifically dephosphorylates CatC at Ser-9 to inhibit its tetramerization and thus activity in the peroxisome. PC1 overexpressing lines exhibited hypersensitivity to salt and oxidative stresses with a lower phospho-serine level of CATs. Phosphatase activity and seminal root growth assays indicated that PC1 promotes growth and plays a vital role during the transition from salt stress to normal growth conditions. Our findings demonstrate that PC1 acts as a molecular switch to dephosphorylate and deactivate CatC and negatively regulate H2O2 homeostasis and salt tolerance in rice. Moreover, knockout of PC1 not only improved H2O2-scavenging capacity and salt tolerance but also limited rice grain yield loss under salt stress conditions. Together, these results shed light on the mechanisms that switch off CAT and provide a strategy for breeding highly salt-tolerant rice.


Assuntos
Oryza , Catalase/genética , Catalase/metabolismo , Oryza/metabolismo , Peróxido de Hidrogênio/metabolismo , Proteína Fosfatase 1/metabolismo , Tolerância ao Sal/genética , Homeostase , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
3.
Small ; : e2311798, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38461518

RESUMO

The photocatalytic environmental decontamination ability of carbon nitride (g-C3 N4 , CN) typically suffers from their inherent structural defects, causing rapid recombination of photogenerated carriers. Conjugating CN with tailored donor-acceptor (D-A) units to counteract this problem through electronic restructuring becomes a feasible strategy, where confirmation by density functional theory (DFT) calculations becomes indispensable. Herein, DFT is employed to predirect the copolymerization modification of CN by benzene derivatives, screening benzaldehyde as the optimal electron-donating candidate for the construction of reoriented intramolecular charge transfer path. Experimental characterization and testing corroborate the formation of a narrowed bandgap as well as high photoinduced carrier separation. Consequently, the optimal BzCN-2 exhibited superior photocatalytic capacity in application for tetracycline hydrochloride degradation, with 3.73 times higher than that of CN. Besides, the BzCN-2-based photocatalytic system is determined to have a toxicity-mitigating effect on TC removal via T.E.S.T and prefers the removal of dissociable TC2- species under partial alkalinity. This work provides insight into DFT guidance for the design of D-A conjugated polymer and its application scenarios in photocatalytic decontamination.

4.
Mol Breed ; 44(1): 4, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38225950

RESUMO

Improving quality is an essential goal of rice breeding and production. However, rice quality is not solely determined by genotype, but is also influenced by the environment. Phenotype plasticity refers to the ability of a given genotype to produce different phenotypes under different environmental conditions, which can be a representation of the stability of traits. Seven quality traits of 141 hybrid combinations, deriving from the test-crossing of 7 thermosensitive genic male sterile (TGMS) and 25 restorer lines, were evaluated at 5 trial sites with intermittent sowing of three to five in Southern China. In the Yangtze River Basin, it was observed that delaying the sowing time of hybrid rice combinations leads to an improvement in their overall quality. Twelve parents were identified to have lower plasticity general combing ability (GCA) values with increased ability to produce hybrids with a more stable quality. The parents with superior quality tend to exhibit lower GCA values for plasticity. The genome-wide association study (GWAS) identified 13 and 15 quantitative trait loci (QTLs) associated with phenotype plasticity and BLUP measurement, respectively. Notably, seven QTLs simultaneously affected both phenotype plasticity and BLUP measurement. Two cloned rice quality genes, ALK and GL7, may be involved in controlling the plasticity of quality traits in hybrid rice. The direction of the genetic effect of the QTL6 (ALK) on alkali spreading value (ASV) plasticity varies in different cropping environments. This study provides novel insights into the dynamic genetic basis of quality traits in response to different cropping regions, cultivation practices, and changing climates. These findings establish a foundation for precise breeding and production of stable and high-quality rice. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-024-01442-3.

5.
Plant J ; 110(6): 1763-1780, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35411551

RESUMO

S-acylation is an important lipid modification that primarily involves DHHC proteins (DHHCs) and associated S-acylated proteins. No DHHC-S-acylated protein pair has been reported so far in rice (Oryza sativa L.) and the molecular mechanisms underlying S-acylation in plants are largely unknown. We constructed an OsDHHC cDNA library for screening corresponding pairs of DHHCs and S-acylated proteins using bimolecular fluorescence complementation assays. Five DHHC-S-acylated protein pairs (OsDHHC30-OsCBL2, OsDHHC30-OsCBL3, OsDHHC18-OsNOA1, OsDHHC13-OsNAC9, and OsDHHC14-GSD1) were identified in rice. Among the pairs, OsCBL2 and OsCBL3 were S-acylated by OsDHHC30 in yeast and rice. The localization of OsCBL2 and OsCBL3 in the endomembrane depended on S-acylation mediated by OsDHHC30. Meanwhile, all four OsDHHCs screened complemented the thermosensitive phenotype of an akr1 yeast mutant, and their DHHC motifs were required for S-acyltransferase activity. Overexpression of OsDHHC30 in rice plants improved their salt and oxidative tolerance. Together, these results contribute to our understanding of the molecular mechanism underlying S-acylation in plants.


Assuntos
Oryza , Proteínas de Saccharomyces cerevisiae , Aciltransferases/metabolismo , Fluorescência , Biblioteca Gênica , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
6.
New Phytol ; 237(3): 840-854, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36305219

RESUMO

Light is a particularly important environmental cue that regulates a variety of diverse plant developmental processes, such as photomorphogenesis. Blue light promotes photomorphogenesis mainly through the activation of the photoreceptor cryptochrome 1 (CRY1). However, the mechanism underlying the CRY1-mediated regulation of growth is not fully understood. Here, we found that blue light induced N6 -methyladenosine (m6 A) RNA modification during photomorphogenesis partially via CRY1. Cryptochrome 1 mediates blue light-induced expression of FKBP12-interacting protein 37 (FIP37), which is a component of m6 A writer. Moreover, we showed that CRY1 physically interacted with FIP37 in vitro and in vivo, and mediated blue light activation of FIP37 binding to RNA. Furthermore, CRY1 and FIP37 modulated m6 A on photomorphogenesis-related genes PIF3, PIF4, and PIF5, thereby accelerating the decay of their transcripts. Genetically, FIP37 repressed hypocotyl elongation under blue light, and fip37 mutation could partially rescue the short-hypocotyl phenotype of CRY1-overexpressing plants. Together, our results provide a new insight into CRY1 signal in modulating m6 A methylation and stability of PIFs, and establish an essential molecular link between m6 A modification and determination of photomorphogenesis in plants.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Criptocromos/genética , Criptocromos/metabolismo , Regulação da Expressão Gênica de Plantas , Hipocótilo/metabolismo , Luz , RNA/metabolismo , Proteína 1A de Ligação a Tacrolimo/genética , Proteína 1A de Ligação a Tacrolimo/metabolismo , Fatores de Transcrição/metabolismo
7.
Mol Breed ; 42(12): 74, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37313323

RESUMO

LecRLKs (lectin receptor-like kinases) is a subfamily of RLKs (receptor like kinase) and takes part in mounds of biological processes in plant-environment interaction. However, the roles of LecRLKs in plant development are still elusive. Here, we showed that OsSRK1, belonging to LecRLK family in rice, had a relative higher expression in internode and stem in comparison with that in root and leaf. Importantly, srk1-1 and srk1-2, two genome-edited mutants of OsSRK1 using CRISPR/Cas9 system, exhibited obviously a decreased plant height and shorter length of the first internode and second internode compared with those in WT. Subsequently, histochemical sectioning showed that the stem diameter and the cell length in stem are significantly reduced in srk1-1 and srk1-2 compared with WT. Moreover, analyzing the expression of four gibberellin biosynthesis related genes showed that CPS, KAO, KS1, and GA3ox2 expression had similar levels between WT and mutants. Importantly, we further verified that OsSRK1 can directly interact with gibberellin receptor GID1. Together, our results revealed that LecRLKs family member OsSRK1 positively regulated plant height by controlling internode elongation which maybe depended on OsSRK1-GID1 interaction mediated gibberellin signaling transduction. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-022-01340-6.

8.
BMC Plant Biol ; 21(1): 117, 2021 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-33637037

RESUMO

BACKGROUND: Plant height is an important plant characteristic closely related to yield performance of many crops. Reasonable reduction of plant height of crops is beneficial for improving yield and enhancing lodging resistance. RESULTS: In the present study, we described the Brassica napus dwarf mutant bnd2 that was isolated using ethyl methanesulfonate (EMS) mutagenesis. Compared to wild type (WT), bnd2 exhibited reduced height and shorter hypocotyl and petiole leaves. By crossing the bnd2 mutant with the WT strain, we found that the ratio of the mutant to the WT in the F2 population was close to 1:3, indicating that bnd2 is a recessive mutation of a single locus. Following bulked segregant analysis (BSA) by resequencing, BND2 was found to be located in the 13.77-18.08 Mb interval of chromosome A08, with a length of 4.31 Mb. After fine mapping with single nucleotide polymorphism (SNP) and insertion/deletion (InDel) markers, the gene was narrowed to a 140-Kb interval ranging from 15.62 Mb to 15.76 Mb. According to reference genome annotation, there were 27 genes in the interval, of which BnaA08g20960D had an SNP type variation in the intron between the mutant and its parent, which may be the candidate gene corresponding to BND2. The hybrid line derived from a cross between the mutant bnd2 and the commercial cultivar L329 had similar plant height but higher grain yield compared to the commercial cultivar, suggesting that the allele bnd2 is beneficial for hybrid breeding of lodging resistant and high yield rapeseed. CONCLUSION: In this study, we identified a novel dwarf mutant of rapeseed with a new locus, which may be useful for functional analyses of genetic mechanisms of plant architecture and grain yield in rapeseed.


Assuntos
Brassica napus/genética , Cromossomos de Plantas , Brassica napus/crescimento & desenvolvimento , Mapeamento Cromossômico , Sequenciamento de Nucleotídeos em Larga Escala , Mutação , Fenótipo , Melhoramento Vegetal , Caules de Planta/citologia
9.
Plant Cell ; 30(5): 1100-1118, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29581216

RESUMO

Salt stress can significantly affect plant growth and agricultural productivity. Receptor-like kinases (RLKs) are believed to play essential roles in plant growth, development, and responses to abiotic stresses. Here, we identify a receptor-like cytoplasmic kinase, salt tolerance receptor-like cytoplasmic kinase 1 (STRK1), from rice (Oryza sativa) that positively regulates salt and oxidative stress tolerance. Our results show that STRK1 anchors and interacts with CatC at the plasma membrane via palmitoylation. CatC is phosphorylated mainly at Tyr-210 and is activated by STRK1. The phosphorylation mimic form CatCY210D exhibits higher catalase activity both in vitro and in planta, and salt stress enhances STRK1-mediated tyrosine phosphorylation on CatC. Compared with wild-type plants, STRK1-overexpressing plants exhibited higher catalase activity and lower accumulation of H2O2 as well as higher tolerance to salt and oxidative stress. Our findings demonstrate that STRK1 improves salt and oxidative tolerance by phosphorylating and activating CatC and thereby regulating H2O2 homeostasis. Moreover, overexpression of STRK1 in rice not only improved growth at the seedling stage but also markedly limited the grain yield loss under salt stress conditions. Together, these results offer an opportunity to improve rice grain yield under salt stress.


Assuntos
Oryza/metabolismo , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Regulação da Expressão Gênica de Plantas , Peróxido de Hidrogênio/metabolismo , Oryza/genética , Estresse Oxidativo/genética , Estresse Oxidativo/fisiologia , Fosforilação , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Estresse Fisiológico
10.
PLoS Biol ; 16(10): e2006340, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30339663

RESUMO

FERONIA (FER), a plasma membrane receptor-like kinase, is a central regulator of cell growth that integrates environmental and endogenous signals. A peptide ligand rapid alkalinization factor 1 (RALF1) binds to FER and triggers a series of downstream events, including inhibition of Arabidopsis H+-ATPase 2 activity at the cell surface and regulation of gene expression in the nucleus. We report here that, upon RALF1 binding, FER first promotes ErbB3-binding protein 1 (EBP1) mRNA translation and then interacts with and phosphorylates the EBP1 protein, leading to EBP1 accumulation in the nucleus. There, EBP1 associates with the promoters of previously identified RALF1-regulated genes, such as CML38, and regulates gene transcription in response to RALF1 signaling. EBP1 appears to inhibit the RALF1 peptide response, thus forming a transcription-translation feedback loop (TTFL) similar to that found in circadian rhythm control. The plant RALF1-FER-EBP1 axis is reminiscent of animal epidermal growth factor receptor (EGFR) signaling, in which EGF peptide induces EGFR to interact with and phosphorylate EBP1, promoting EBP1 nuclear accumulation to control cell growth. Thus, we suggest that in response to peptide signals, plant FER and animal EGFR use the conserved key regulator EBP1 to control cell growth in the nucleus.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas Nucleares/metabolismo , Hormônios Peptídicos/metabolismo , Fosfotransferases/metabolismo , Animais , Arabidopsis/citologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Núcleo Celular/metabolismo , Proliferação de Células/genética , Retroalimentação Fisiológica , Genes de Plantas , Modelos Biológicos , Mutação , Proteínas Nucleares/genética , Hormônios Peptídicos/genética , Fosforilação , Fosfotransferases/genética , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Plantas/genética , RNA de Plantas/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transdução de Sinais , Técnicas do Sistema de Duplo-Híbrido
11.
J Integr Plant Biol ; 63(6): 1161-1178, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33811744

RESUMO

In plants, clade A type 2C protein phosphatases (PP2CAs) have emerged as major players in abscisic acid (ABA)-regulated stress responses by inhibiting protein kinase activity. However, how different internal and external environmental signals modulate the activity of PP2CAs are not well known. The transmembrane kinase (TMK) protein 4 (TMK4), one member of a previously identified receptor kinase subfamily on the plasma membrane that plays vital roles in plant cell growth, directly interacts with PP2CAs member (ABA-Insensitive 2, ABI2). tmk4 mutant is hypersensitive to ABA in both ABA-inhibited seed germination and primary root growth, indicating that TMK4 is a negative regulator in ABA signaling pathway. Further analyses indicate that TMK4 phosphorylates ABI2 at three conserved Ser residues, thus enhancing the activity of ABI2. The phosphorylation-mimic ABI2S139DS140DS266D can complement but non-phosphorylated form ABI2S139AS140AS266A cannot complement ABA hypersensitive phenotype of the loss-of-function mutant abi1-2abi2-2. This study provides a previously unidentified mechanism for positively regulating ABI2 by a plasma membrane protein kinase.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ácido Abscísico/farmacologia , Arabidopsis/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
12.
J Exp Bot ; 71(14): 4010-4019, 2020 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-32242227

RESUMO

The ubiquitin (Ub)/26S proteasome system (UPS) plays a key role in plant growth, development, and survival by directing the turnover of numerous regulatory proteins. In the UPS, the ubiquitin-like (UBL) and ubiquitin-associated (UBA) domains function as hubs for ubiquitin-mediated protein degradation. Radiation sensitive 23 (RAD23), which has been identified as a UBL/UBA protein, contributes to the progression of the cell cycle, stress responses, ER proteolysis, and DNA repair. Here, we report that pollen development is arrested at the microspore stage in a rad23b null mutant. We demonstrate that RAD23B can directly interact with KIP-related protein 1 (KRP1) through its UBL-UBA domains. In addition, plants overexpressing KRP1 have defects in pollen development, which is a phenotype similar to the rad23b mutant. RAD23B promotes the degradation of KRP1 in vivo, which is accumulated following treatment with the proteasome inhibitor MG132. Our results indicate that RAD23B plays an important in pollen development by controlling the turnover of the key cell cycle protein, KRP1.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Ciclo Celular , Proteínas de Ligação a DNA , Pólen/genética , Complexo de Endopeptidases do Proteassoma/genética , Ubiquitina
13.
Biosci Biotechnol Biochem ; 84(7): 1384-1393, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32186471

RESUMO

Seed germination is regulated by light. Phytochromes (Phys) act as red and far-red light photoreceptors to mediate seed germination. However, the mechanism of this process is not well understood. In this study, we found that the Arabidopsis thaliana mutants vascular plant one-zinc finger 1 (voz1) and voz2 showed higher seed germination percentage than wild type when PhyB was inactivated by far-red light. In wild type, VOZ1 and VOZ2 expression were downregulated after seed imbibition, repressed by PhyB, and upregulated by Phytochrome-interacting factor 1 (PIF1), a key negative regulator of seed germination. Red light irradiation and the voz1voz2 mutation caused increased expression of Gibberellin 3-oxidase 1 (GA3ox1), a gibberellin (GA) biosynthetic gene. We also found that VOZ2 is bound directly to the promoter of GA3ox1 in vitro and in vivo. Our findings suggest that VOZs play a negative role in PhyB-mediated seed germination, possibly by directly regulating GA3ox1 expression.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Germinação/genética , Germinação/efeitos da radiação , Fitocromo B/metabolismo , Sementes/crescimento & desenvolvimento , Fatores de Transcrição/metabolismo , Proteínas de Arabidopsis/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Regulação da Expressão Gênica de Plantas , Giberelinas/metabolismo , Luz , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Plantas Geneticamente Modificadas , Transdução de Sinais/genética , Transdução de Sinais/efeitos da radiação , Fatores de Transcrição/genética
14.
Biotechnol Lett ; 42(8): 1479-1488, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32144558

RESUMO

OBJECTIVE: Identification and characterization of a novel bacterial carbohydrate esterase (PaCes7) with application potential for lignocellulose and pesticide degradation. RESULTS: PaCes7 was identified from the lignocellulolytic bacterium, Pantoea ananatis Sd-1 as a new carbohydrate esterase. Recombinant PaCes7 heterologously expressed in Escherichia coli showed a clear preference for esters with short-chain fatty acids and exhibited maximum activity towards α-naphthol acetate at 37 °C and pH 7.5. Purified PaCes7 exhibited its catalytic activity under mesophilic conditions and retained more than 40% activity below 30 °C. It displayed a relatively wide pH stability from pH 6-11. Furthermore, the enzyme was strongly resistant to Mg2+, Pb2+, and Co2+ and activated by K+ and Ca2+. Both P. ananatis Sd-1 and PaCes7 could degrade the pesticide carbaryl. Additionally, PaCes7 was shown to work in combination with cellulase and/or xylanase in rice straw degradation. CONCLUSIONS: The data suggest that PaCes7 possesses promising biotechnological potential.


Assuntos
Proteínas de Bactérias , Esterases , Lignina/metabolismo , Pantoea/enzimologia , Praguicidas/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biodegradação Ambiental , Carbaril/metabolismo , Estabilidade Enzimática , Esterases/química , Esterases/genética , Esterases/metabolismo , Pantoea/genética
15.
J Integr Plant Biol ; 62(11): 1717-1740, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32427421

RESUMO

FLAVIN-BINDING KELCH REPEAT F-BOX 1 (FKF1) encodes an F-box protein that regulates photoperiod flowering in Arabidopsis under long-day conditions (LDs). Gibberellin (GA) is also important for regulating flowering under LDs. However, how FKF1 and the GA pathway work in concert in regulating flowering is not fully understood. Here, we showed that the mutation of FKF1 could cause accumulation of DELLA proteins, which are crucial repressors in GA signaling pathway, thereby reducing plant sensitivity to GA in flowering. Both in vitro and in vivo biochemical analyses demonstrated that FKF1 directly interacted with DELLA proteins. Furthermore, we showed that FKF1 promoted ubiquitination and degradation of DELLA proteins. Analysis of genetic data revealed that FKF1 acted partially through DELLAs to regulate flowering under LDs. In addition, DELLAs exerted a negative feedback on FKF1 expression. Collectively, these findings demonstrate that FKF1 promotes flowering partially by negatively regulating DELLA protein stability under LDs, and suggesting a potential mechanism linking the FKF1 to the GA signaling DELLA proteins.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Flores/metabolismo , Fotoperíodo , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Flores/genética , Flores/fisiologia , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Giberelinas/metabolismo , Fatores de Transcrição/genética
16.
Analyst ; 144(13): 3972-3979, 2019 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-31140473

RESUMO

Hepatitis C virus (HCV) is a major cause of chronic liver disease, which affects 2-3% of the world population. Until now, the early detection of HCV has been a great challenge, especially for those who live in developing countries. In this study, we developed a novel and ultrasensitive assay for the detection of HCV RNA based on the reduced graphene oxide nanosheets (rGONS) and hybridization chain reaction (HCR) amplification technique. This detection system contains a pair of single fluorophore-labeled hairpin probes that can freely exist in the solution in the absence of target RNA. The introduction of target RNA can robustly trigger a HCR with the two probes and produce long nanowires containing a double-stranded structure. The weak adsorption to rGONS makes the long nanowires emit a strong fluorescence. Using this enzyme-free amplification strategy, we developed a new method for the HCV RNA assay with a detection limit of 10 fM, which is far more sensitive than the common GO-based fluorescence method. Furthermore, the new method exhibits high selectivity for the discrimination of perfectly complementary and mismatched sequences. Finally, the new method was successfully used as a HCV RNA assay in biological samples with a strong anti-interference capability in complicated environments. In summary, these remarkable characteristics of the new method highlight its potential use in a clinical sample primary screening.


Assuntos
Bioensaio/métodos , Técnicas Biossensoriais/métodos , Grafite/química , Hepacivirus/isolamento & purificação , RNA Viral/análise , Linhagem Celular Tumoral , DNA/química , DNA/genética , Sondas de DNA/química , Sondas de DNA/genética , Fluoresceínas/química , Fluorescência , Corantes Fluorescentes/química , Grafite/síntese química , Células HEK293 , Humanos , Limite de Detecção , Técnicas de Amplificação de Ácido Nucleico/métodos , Hibridização de Ácido Nucleico , Oxirredução , Estudo de Prova de Conceito , RNA Viral/genética , Espectrometria de Fluorescência/métodos
17.
Proc Natl Acad Sci U S A ; 113(51): E8326-E8334, 2016 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-27930296

RESUMO

A number of hormones work together to control plant cell growth. Rapid Alkalinization Factor 1 (RALF1), a plant-derived small regulatory peptide, inhibits cell elongation through suppression of rhizosphere acidification in plants. Although a receptor-like kinase, FERONIA (FER), has been shown to act as a receptor for RALF1, the signaling mechanism remains unknown. In this study, we identified a receptor-like cytoplasmic kinase (RPM1-induced protein kinase, RIPK), a plasma membrane-associated member of the RLCK-VII subfamily, that is recruited to the receptor complex through interacting with FER in response to RALF1. RALF1 triggers the phosphorylation of both FER and RIPK in a mutually dependent manner. Genetic analysis of the fer-4 and ripk mutants reveals RIPK, as well as FER, to be required for RALF1 response in roots. The RALF1-FER-RIPK interactions may thus represent a mechanism for peptide signaling in plants.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/crescimento & desenvolvimento , Hormônios Peptídicos/fisiologia , Raízes de Plantas/crescimento & desenvolvimento , Proteínas Quinases/fisiologia , Arabidopsis/genética , Citoplasma/metabolismo , Ligantes , Microscopia Confocal , Mutação , Fenótipo , Fosforilação , Fosfotransferases/fisiologia , Fotoperíodo , Filogenia , Reguladores de Crescimento de Plantas/fisiologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Domínios Proteicos , Sementes/metabolismo , Transdução de Sinais
18.
Proc Natl Acad Sci U S A ; 113(37): E5519-27, 2016 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-27566404

RESUMO

Receptor-like kinase FERONIA (FER) plays a crucial role in plant response to small molecule hormones [e.g., auxin and abscisic acid (ABA)] and peptide signals [e.g., rapid alkalinization factor (RALF)]. It remains unknown how FER integrates these different signaling events in the control of cell growth and stress responses. Under stress conditions, increased levels of ABA will inhibit cell elongation in the roots. In our previous work, we have shown that FER, through activation of the guanine nucleotide exchange factor 1 (GEF1)/4/10-Rho of Plant 11 (ROP11) pathway, enhances the activity of the phosphatase ABA Insensitive 2 (ABI2), a negative regulator of ABA signaling, thereby inhibiting ABA response. In this study, we found that both RALF and ABA activated FER by increasing the phosphorylation level of FER. The FER loss-of-function mutant displayed strong hypersensitivity to both ABA and abiotic stresses such as salt and cold conditions, indicating that FER plays a key role in ABA and stress responses. We further showed that ABI2 directly interacted with and dephosphorylated FER, leading to inhibition of FER activity. Several other ABI2-like phosphatases also function in this pathway, and ABA-dependent FER activation required PYRABACTIN RESISTANCE (PYR)/PYR1-LIKE (PYL)/REGULATORY COMPONENTS OF ABA RECEPTORS (RCAR)-A-type protein phosphatase type 2C (PP2CA) modules. Furthermore, suppression of RALF1 gene expression, similar to disruption of the FER gene, rendered plants hypersensitive to ABA. These results formulated a mechanism for ABA activation of FER and for cross-talk between ABA and peptide hormone RALF in the control of plant growth and responses to stress signals.


Assuntos
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/genética , Hormônios Peptídicos/genética , Fosfotransferases/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Hormônios Peptídicos/metabolismo , Fosfoproteínas Fosfatases/genética , Fosfoproteínas Fosfatases/metabolismo , Fosforilação , Fosfotransferases/metabolismo , Reguladores de Crescimento de Plantas , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas , Ligação Proteica , Transdução de Sinais/genética , Estresse Fisiológico/genética
19.
Breed Sci ; 69(3): 429-438, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31598075

RESUMO

As glutamate dehydrogenases (GDHs) of microorganisms usually have higher affinity for NH4 + than do those of higher plants, it is expected that ectopic expression of these GDHs can improve nitrogen assimilation in higher plants. Here, a novel NADP(H)-GDH gene (TrGDH) was isolated from the fungus Trichurus and introduced into rice (Oryza sativa L.). Investigation of kinetic properties in vitro showed that, compared with the rice GDH (OsGDH4), TrGDH exhibited higher affinity for NH4 + (K m = 1.48 ± 0.11 mM). Measurements of the NH4 + assimilation rate demonstrated that the NADP(H)-GDH activities of TrGDH transgenic lines were significantly higher than those of the controls. Hydroponic experiments revealed that the fresh weight, dry weight and nitrogen content significantly increased in the TrGDH transgenic lines. Field trials further demonstrated that the number of effective panicles, 1,000-grain weight and grain weight per plant of the transgenic lines were significantly higher than those of the controls, especially under low-nitrogen levels. Moreover, glutelin and prolamine were found to be markedly increased in seeds from the transgenic rice plants. These results sufficiently confirm that overexpression of TrGDH in rice can improve the growth status and grain weight per plant by enhancing nitrogen assimilation. Thus, TrGDH is a promising candidate gene for maintaining yields in crop plants via genetic engineering.

20.
Pestic Biochem Physiol ; 160: 58-69, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31519258

RESUMO

Microbial antagonists and their bioactive metabolites provide one of the best alternatives to chemical pesticides to control crop disease for sustainable agriculture and global food security. The rice endophyte Streptomyces hygroscopicus OsiSh-2, with remarkable antagonistic activity towards the rice blast fungus Magnaporthe oryzae, was reported in our previous study. The present study deciphered the possible direct interaction mode of OsiSh-2 against M. oryzae. An in vitro antibiotic assay for OsiSh-2 culture filtrate revealed strong suppression of mycelial growth, conidial germination and appressorial formation of M. oryzae. Meanwhile, severe morphological and internal abnormalities in M. oryzae hyphae were observed under a scanning electron microscope and transmission electron microscope. Foliar treatment of rice seedlings by OsiSh-2 culture filtrate in the greenhouse and in the field showed 23.5% and 28.3% disease reduction, respectively. Correspondingly, OsiSh-2 culture filtrate could induce disorganized chitin deposition in the cell wall and lowered ergosterol content in the cell membrane of M. oryzae. Additionally, cell wall integrity pathway activation, large cell electrolytes release, reactive oxygen species accumulation and tricarboxylic acid cycle-related enzyme activity changes were found in M. oryzae. All these results suggested that the direct antagonistic activity of OsiSh-2 against M. oryzae may be attributed to damaging the integrity of the cell wall and membrane and disrupting mitochondrial function in the pathogen.


Assuntos
Antifúngicos/farmacologia , Endófitos/fisiologia , Magnaporthe/efeitos dos fármacos , Oryza/microbiologia , Controle Biológico de Vetores , Streptomyces/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA