Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

País/Região como assunto
Ano de publicação
Intervalo de ano de publicação
1.
Arch Environ Contam Toxicol ; 86(1): 73-89, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38117305

RESUMO

The mining and smelting site soils in South China present excessive Cd pollution. However, the transport behavior of Cd in the highly weathered acidic soil layer at the lead-zinc smelting site remains unclear. Here, under different conditions of simulated infiltration, the migration behavior of Cd2+ in acid smelting site soils at different depths was examined. The remodeling effect of Cd2+ migration behavior on microbial community structure and the dominant microorganisms in lead-zinc sites soils was analyzed using high-throughput sequencing of 16S rRNA gene amplicons. The results revealed a specific flow rate in the range of 0.3-0.5 mL/min that the convection and dispersion have no obvious effect on Cd2+ migration. The variation of packing porosity could only influence the migration behavior by changing the average pore velocity, but cannot change the adsorption efficiency of soil particles. The Cd has stronger migration capacity under the reactivation of acidic seepage fluid. However, in the alkaline solution, the physical properties of soil, especially pores, intercept the Cd compounds, further affecting their migration capacity. The acid-site soil with high content of SOM, amorphous Fe oxides, crystalline Fe/Mn/Al oxides, goethite, and hematite has stronger ability to adsorb and retain Cd2+. However, higher content of kaolinite in acidic soil will increase the potential migration of Cd2+. Besides, the migration behavior of Cd2+ results in simplified soil microbial communities. Under Cd stress, Cd-tolerant genera (Bacteroides, Sphingomonas, Bradyrhizobium, and Corynebacterium) and bacteria with both acid-Cd tolerance (WCHB 1-84) were distinguished. The Ralstonia showed a high enrichment degree in alkaline Cd2+ infiltration solution (pH 10.0). Compared to the influence of Cd2+ stress, soil pH had a stronger ability to shape the microbial community in the soil during the process of Cd2+ migration.


Assuntos
Microbiota , Poluentes do Solo , Solo/química , Cádmio/toxicidade , RNA Ribossômico 16S , Poluentes do Solo/toxicidade , Poluentes do Solo/análise , Zinco/análise , Óxidos
2.
Microorganisms ; 12(6)2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38930470

RESUMO

The extensive harvesting of Macleaya cordata, as a biomedicinal plant and a wild source of quaternary benzo[c]phenanthridine alkaloids, has led to a rapid decline in its population. An alternative approach to the production of these bioactive compounds, which are known for their diverse pharmacological effects, is needed. Production of these compounds using alkaloid-producing endophytic fungi is a promising potential approach. In this research, we isolated an alkaloid-producing endophytic fungus, strain MC503, from the roots of Macleaya cordata. Genomic analysis was conducted to elucidate its metabolic pathways and identify the potential genes responsible for alkaloid biosynthesis. High-performance liquid chromatography (HPLC) and liquid chromatography-mass spectrometry (LC-MS) analyses revealed the presence and quantified the content of sanguinarine (536.87 µg/L) and chelerythrine (393.31 µg/L) in the fungal fermentation extract. Based on our analysis of the morphological and micromorphological characteristics and the ITS region of the nuclear ribosomal DNA of the alkaloid-producing endophyte, it was identified as Fusarium solani strain MC503. To the best of our knowledge, there is no existing report on Fusarium solani from Macleaya cordata or other medicinal plants that produce sanguinarine and chelerythrine simultaneously. These findings provide valuable insights into the capability of Fusarium solani to carry out isoquinoline alkaloid biosynthesis and lay the foundation for further exploration of its potential applications in pharmaceuticals.

3.
Microorganisms ; 12(3)2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38543473

RESUMO

Bioleaching has gained significant attention as a cost-effective and environmentally friendly approach for extracting metals from low-grade ores and industrial byproducts. The application of acidophiles in bioleaching has been extensively studied. Among the various mechanisms leaching microorganisms utilize, quorum sensing (QS) is pivotal in regulating their life activities in response to population density. QS has been confirmed to regulate bioleaching, including cell morphology, community structure, biofilm formation, and cell metabolism. Potential applications of QS have also been proposed, such as increasing mineral leaching rates by adding signaling molecules. This review is helpful for comprehensively understanding the role of QS in bioleaching and promoting the practical application of QS-based strategies in bioleaching process optimization.

4.
Toxics ; 12(5)2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38787141

RESUMO

Microbial scale-up cultivation is the first step to bioremediating cadmium (Cd)-contaminated soils at the industrial scale. However, the changes in the microbial community as the bioreactor volume expands and their associations with soil Cd removal remain unclear. Herein, a six-stage scale-up cultivation process of mixotrophic acidophiles was conducted, scaling from 0.1 L to 10 m3, to remediate Cd-contaminated soils. The findings showed that bioreactor expansion led to a delay in sulfur and glucose oxidations, resulting in a reduced decline in solution pH and cell density. There were minimal differences observed in bacterial alpha-diversity and community structure as the bioreactor volume increased, except for the 10 m3 scale. However, bioreactor expansion decreased fungal alpha-diversity, changed the community structure, and simplified fungal community compositions. At the family level, Acidithiobacillaceae and Debaryomycetaceae dominated the bacterial and fungal communities throughout the scale-up process, respectively. Correlation analysis indicated that the indirect effect of mixotrophic acidophiles played a significant role in soil Cd removal. Bacterial community shifts, driven by changes in bioreactor volume, decreased the pH value through sulfur oxidation, thereby indirectly enhancing Cd removal efficiency. This study will contribute to the potential industrial application of mixotrophic acidophiles in bioremediating Cd-contaminated soils.

5.
Microb Biotechnol ; 17(4): e14469, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38647123

RESUMO

Owing to the increasing need for green synthesis and environmental protection, the utilization of biological organism-derived carbons as supports for noble-metal electrocatalysts has garnered public interest. Nevertheless, the mechanism by which microorganisms generate nanometals has not been fully understood yet. In the present study, we used genetically engineered bacteria of Shewanella oneidensis MR-1 (∆SO4317, ∆SO4320, ∆SO0618 and ∆SO3745) to explore the effect of surface substances including biofilm-associated protein (bpfA), protein secreted by type I secretion systems (TISS) and type II secretion systems (T2SS), and lipopolysaccharide in microbial synthesis of metal nanoparticles. Results showed Pd/∆SO4317 (the catalyst prepared with the mutant ∆SO4317) shows better performance than other biocatalysts and commercial Pd/C, where the mass activity (MA) and specific activity (SA) of Pd/∆SO4317 are 3.1 and 2.1 times higher than those of commercial Pd/C, reaching 257.49 A g-1 and 6.85 A m-2 respectively. It has been found that the exceptional performance is attributed to the smallest particle size and the presence of abundant functional groups. Additionally, the absence of biofilms has been identified as a crucial factor in the formation of high-quality bio-Pd. Because the absence of biofilm can minimize metal agglomeration, resulting in uniform particle size dispersion. These findings provide valuable mechanical insights into the generation of biogenic metal nanoparticles and show potential industrial and environmental applications, especially in accelerating oxygen reduction reactions.


Assuntos
Nanopartículas Metálicas , Oxirredução , Oxigênio , Paládio , Shewanella , Shewanella/genética , Shewanella/metabolismo , Paládio/metabolismo , Paládio/química , Nanopartículas Metálicas/química , Oxigênio/metabolismo , Engenharia Genética , Microrganismos Geneticamente Modificados/genética , Microrganismos Geneticamente Modificados/metabolismo
6.
Sci Total Environ ; 938: 173354, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38796007

RESUMO

Soil formation is a complex process that starts from the biological development. The ecological principles and biological function in soil are of great importance, whereas their response to anthropogenic intervention has been poorly understood. In this study, a 150-day microcosmic experiment was conducted with the addition of sludge and/or fermented wood chips (FWC) to promote the soil maturation. The results showed that, compared to the control (natural development without anthropogenic intervention), sludge, FWC, and their combination increased the availability of carbon, nitrogen, and potassium, and promoted the soil aggregation. They also enhanced the cellulase activity, microbial biomass carbon (MBC) and bacterial diversity, indicating that anthropogenic interventions promoted the maturation of sand soil. Molecular ecology network and functional analyses indicated that soil maturation was accomplished with the enhancement of ecosystem functionality and stability. Specifically, sludge promoted a transition in bacterial community function from denitrification to nitrification, facilitated the degradation of easily degradable organic matter, and enhanced the autotrophic nutritional mode. FWC facilitated the transition of bacterial function from denitrification to ammonification, promoted the degradation of recalcitrant organic matter, and simultaneously enhanced both autotrophic and heterotrophic nutritional modes. Although both sludge and FWC promoted the soil functionality, they showed distinct mechanistic actions, with sludge enhancing the physical structure, and FWC altering chemical composition. It is also worth emphasizing that sludge and FWC exhibited a synergistic effect in promoting biological development and ecosystem stability, thereby providing an effective avenue for soil maturation.


Assuntos
Bactérias , Mineração , Microbiologia do Solo , Solo , Solo/química , Areia , Nitrogênio , Carbono
7.
Electron. j. biotechnol ; 11(1): 1-12, Jan. 2008. ilus, graf, tab
Artigo em Inglês | LILACS | ID: lil-522156

RESUMO

This study presents bacterial population analyses of microbial communities inhabiting three sites of acid mine drainage (AMD) in the Shen-bu copper mine, Gansu Province, China. These sites were located next to acid-leached chalcopyrite slagheaps that had been abandoned since 1995. The pH values of these samples with high concentrations of metals ranged from 2.0 to 3.5. Amplified ribosomal DNA restriction analysis (ARDRA) was used to characterize the bacterial population by amplifying the 16S rRNA gene of microorganisms. A total of 39 operational taxonomic units (OTUs) were obtained from the three samples and sequenced from 384 clones. Sequence data and phylogenetic analyses showed that two dominant clones (JYC-1B, JYC-1D) in sample JYC-1 represented 69.5 percent of the total clones affiliated with Acidithiobacillus ferrooxidans (gamma-Proteobacteria), and the most dominant clones of JYC-2 and JYC-3 were affiliated with Caulobacter crescentus (alpha-Protebacteria). At the level of bacterial divisions, differences in the relative incidence of particular phylogenetic groups among the three samples and discrepancies in physicochemical characteristics suggested that the physico-chemical characteristics had an influence on phylogenetic diversity. Furthermore, the relationships between the discrepancies of physicochemical characteristics and the diversity of the bacteria communities in the three samples suggested that the biogeochemical properties, pH and concentration of soluble metal, could be key factors in controlling the structure of the bacterial population.


Assuntos
Bactérias/classificação , Água Ácida de Mineração , Drenagem do Solo , China , Cobre/isolamento & purificação , Cobre/análise , DNA Ribossômico , Percolação , Reação em Cadeia da Polimerase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA