Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 626
Filtrar
1.
J Virol ; 98(10): e0090224, 2024 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-39324793

RESUMO

The life cycle of foot-and-mouth disease virus (FMDV) is tightly regulated by host cell lipid metabolism. In previous studies, we reported downregulated expression of stearoyl coenzyme A desaturase-1 (SCD1), a key enzyme of fatty acid metabolism, in BHK-VEC cells (a virus-negative cell line derived from BKH-21 cells with persistent FMDV infection) on comparing transcriptomic data for BHK-VEC and BHK-21 cells (Y. Yuan et al., Front Cell Infect Microbiol 12:940906, 2022, https://doi.org/10.3389/fcimb.2022.940906; L. Han et al., Vet Microbiol 263:109247, 2021, https://doi.org/10.1016/j.vetmic.2021.109247). In the present study, we identify that SCD1 regulates FMDV replication. SCD1 overexpression or exogenous addition of oleic acid (OA), a product of the enzymatic activity of SCD1, increased FMDV replication in both BHK-21 cells and SCD1-knockdown cells. Overexpression of SCD1 or exogenous addition of OA restored FMDV infection and replication in BHK-VEC cells, and OA also promoted FMDV replication in BHK-21 cells with persistent FMDV infection. SCD1 recruited the nonstructural FMDV protein 2C to a detergent-resistant membrane located in the perinuclear region of cells to form replication complexes. Inhibiting SCD1 enzyme activity resulted in a significantly decreased number of FMDV replication complexes with abnormal morphology. Inhibition of SCD1 activity also effectively decreased the replication of other RNA viruses such as respiratory enteric orphan virus-3-176, poliovirus-1, enterovirus 71, and vesicular stomatitis virus. Our results demonstrate that SCD1, as a key host regulator of RNA virus replication, is a potential target for developing novel drugs against infections by RNA viruses. IMPORTANCE: Many positive-stranded RNA viruses, including foot-and-mouth disease virus (FMDV), alter host membranes and lipid metabolism to create a suitable microenvironment for their survival and replication within host cells. In FMDV-infected cells, the endoplasmic reticulum membrane is remodeled, forming vesicular structures that rely heavily on increased free fatty acids, thereby linking lipid metabolism to the FMDV replication complex. Nonstructural FMDV protein 2C is crucial for this complex, while host cell enzyme stearoyl coenzyme A desaturase 1 (SCD1) is vital for lipid metabolism. We found that FMDV infection alters SCD1 expression in host cells. Inhibiting SCD1 expression or its enzymatic activity markedly decreases FMDV replication, while supplementing oleic acid, a catalytic product of SCD1, regulates FMDV replication. Additionally, SCD1 forms part of the FMDV replication complex and helps recruit 2C to a detergent-resistant membrane. Our study provides insights into the pathogenesis of FMDV and a potential novel drug target against the virus.


Assuntos
Vírus da Febre Aftosa , Metabolismo dos Lipídeos , Estearoil-CoA Dessaturase , Replicação Viral , Vírus da Febre Aftosa/fisiologia , Vírus da Febre Aftosa/genética , Vírus da Febre Aftosa/metabolismo , Estearoil-CoA Dessaturase/metabolismo , Estearoil-CoA Dessaturase/genética , Animais , Linhagem Celular , Cricetinae , Ácido Oleico/metabolismo , Ácido Oleico/farmacologia , Proteínas não Estruturais Virais/metabolismo , Proteínas não Estruturais Virais/genética , Febre Aftosa/virologia , Febre Aftosa/metabolismo , Interações Hospedeiro-Patógeno
2.
Ann Neurol ; 96(3): 508-525, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39032123

RESUMO

OBJECTIVE: Despite the high prevalence, mild traumatic brain injury (mTBI)-induced chronic headache and cognitive deficits are poorly understood and lack effective treatments. Low-dose interleukin-2 (LD-IL-2) treatment soon after mTBI or overexpressing IL-2 in brain astrocytes prior to injury protects mice from developing post-traumatic headache (PTH)-related behaviors and cognitive decline. The present study addresses a clinically relevant knowledge gap: whether LD-IL-2 treatment long after the initial injury is still effective for chronic PTH and cognitive deficits. METHODS: mTBI was induced by a noninvasive closed-head weight drop method. LD-IL-2 was administered 4-6 weeks post-mTBI to assess its effects on chronic PTH-related facial mechanical hypersensitivity as well as mTBI-induced impairment in novel object recognition and object location tests. Endogenous regulatory T (Treg) cells were depleted to investigate the mechanism of action of LD-IL-2. RESULTS: Delayed LD-IL-2 treatment abolished chronic PTH-related behaviors. It also completely reversed mTBI-induced cognitive impairment in both male and female mice. Treg cell depletion not only prolonged PTH-related behaviors but also abolished the effects of LD-IL-2. Interestingly, LD-IL-2 treatment significantly increased the number of Treg cells in dura but not in brain tissues. INTERPRETATION: These results suggest that the beneficial effects of LD-IL-2 treatment are mediated through the expansion of meningeal Treg cells. Collectively, our study identifies Treg as a cellular target and LD-IL-2 as a promising therapy for both chronic PTH and mTBI-induced cognitive impairment for both males and females, with a wide therapeutic time window and the potential of reducing polypharmacy in mTBI treatment. ANN NEUROL 2024;96:508-525.


Assuntos
Concussão Encefálica , Disfunção Cognitiva , Modelos Animais de Doenças , Interleucina-2 , Animais , Camundongos , Masculino , Feminino , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/tratamento farmacológico , Concussão Encefálica/complicações , Concussão Encefálica/tratamento farmacológico , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/tratamento farmacológico , Camundongos Endogâmicos C57BL , Cefaleia Pós-Traumática/etiologia , Cefaleia Pós-Traumática/tratamento farmacológico , Dor/etiologia , Dor/tratamento farmacológico
3.
J Virol ; 97(5): e0036923, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37162335

RESUMO

Foot-and-mouth disease virus (FMDV) is a single-stranded picornavirus that causes economically devastating disease in even-hooved animals. There has been little research on the function of host cells during FMDV infection. We aimed to shed light on key host factors associated with FMDV replication during acute infection. We found that HDAC1 overexpression in host cells induced upregulation of FMDV RNA and protein levels. Activation of the AKT-mammalian target of rapamycin (mTOR) signaling pathway using bpV(HOpic) or SC79 also promoted FMDV replication. Furthermore, short hairpin RNA (shRNA)-induced suppression of carbamoyl-phosphate synthetase 2, aspartate transcarbamylase, and dihydroorotase (CAD), a transcription factor downstream of the AKT-mTOR signaling pathway, resulted in downregulation of FMDV RNA and protein levels. Coimmunoprecipitation assays showed that the ACTase domain of CAD could interact with the FMDV 2C protein, suggesting that the ACTase domain of CAD may be critical in FMDV replication. CAD proteins participate in de novo pyrimidine synthesis. Inhibition of FMDV replication by deletion of the ACTase domain of CAD in host cells could be reversed by supplementation with uracil. These results revealed that the contribution of the CAD ACTase domain to FMDV replication is dependent on de novo pyrimidine synthesis. Our research shows that HDAC1 promotes FMDV replication by regulating de novo pyrimidine synthesis from CAD via the AKT-mTOR signaling pathway. IMPORTANCE Foot-and-mouth disease virus is an animal virus of the Picornaviridae family that seriously harms the development of animal husbandry and foreign trade of related products, and there is still a lack of effective means to control its harm. Replication complexes would generate during FMDV replication to ensure efficient replication cycles. 2C is a common viral protein in the replication complex of Picornaviridae virus, which is thought to be an essential component of membrane rearrangement and viral replication complex formation. The host protein CAD is a key protein in the pyrimidines de novo synthesis. In our research, the interaction of CAD and FMDV 2C was demonstrated in FMDV-infected BHK-21 cells, and it colocalized with 2C in the replication complex. The inhibition of the expression of FMDV 3D protein through interference with CAD and supplementation with exogenous pyrimidines reversed this inhibition, suggesting that FMDV might recruit CAD through the 2C protein to ensure pyrimidine supply during replication. In addition, we also found that FMDV infection decreased the expression of the host protein HDAC1 and ultimately inhibited CAD activity through the AKT-mTOR signaling pathway. These results revealed a unique means of counteracting the virus in BHK-21 cells lacking the interferon (IFN) signaling pathway. In conclusion, our study provides some potential targets for the development of drugs against FMDV.


Assuntos
Vírus da Febre Aftosa , Febre Aftosa , Animais , Linhagem Celular , Vírus da Febre Aftosa/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Pirimidinas , RNA/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Replicação Viral , Cricetinae
4.
Hum Reprod ; 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38783610

RESUMO

STUDY QUESTION: Does the expression of proliferating cell nuclear antigen (PCNA) in the endometrium regulate endometrial receptivity in patients with recurrent implantation failure (RIF)? SUMMARY ANSWER: A high abundance of PCNA attenuates endometrial adhesive capacity and decidualization in patients with RIF. WHAT IS KNOWN ALREADY: Aberrant expression of PCNA has been discovered in multiple infertility-related disorders. However, the expression pattern and role of PCNA in the establishment of endometrial receptivity and endometrial decidualization in patients with RIF remain unclear. STUDY DESIGN, SIZE, DURATION: We analysed the expression of PCNA in mid-secretory endometrial tissues from 24 patients with RIF and 24 healthy women. Additionally, PCNA expression levels were measured in proliferative and mid-secretory phase endometrial tissue samples from women with regular menstrual cycles and in decidual tissue samples taken from ten women during normal early pregnancy (n = 10 per phase for each group). The function and regulatory mechanisms of PCNA in endometrial adhesive capacity and endometrial decidualization were investigated using BeWo spheroids, Ishikawa cells, and human endometrial stromal cells (HESCs). PARTICIPANTS/MATERIALS, SETTING, METHODS: The expression of PCNA in mid-secretory endometrial tissues of patients with RIF and women with normal endometrium and in endometrial tissue at different stages of the menstrual cycle and in decidualized tissues was analysed by RT-qPCR, western blot, and immunohistochemistry staining (IHC). Furthermore, the number of BeWo spheroids directly attached to the Ishikawa cell monolayers, and the potential molecular mechanisms involved, were compared between cells overexpressing PCNA and a control group. Additionally, the effect and regulatory mechanisms of PCNA on the decidualization of HESCs in vitro were investigated. MAIN RESULTS AND THE ROLE OF CHANCE: Our findings indicated that the abundance of PCNA was dramatically greater in mid-secretory endometrial tissues from patients with RIF than in those from women with healthy endometrium. The expression of PCNA increased in the proliferative phase of the menstrual cycle but decreased gradually in the mid-secretory phase and in decidual tissues. Interestingly, PCNA was expressed in both human endometrial epithelial cells (HEECs) and HESCs. In Ishikawa cells, PCNA overexpression dramatically reduced the endometrial adhesive capacity by inhibiting the expression of adhesion molecules (E-cadherin and integrin ß3) and activating the FAK/paxillin signalling pathway. Furthermore, in HESCs, PCNA overexpression attenuated endometrial decidualization by activating the AKT/ß-catenin signalling pathway and increasing tight junctions between cells by upregulating ZO-1 and occludin expression. In addition, PCNA-ELAVL1 interactions were confirmed by coimmunoprecipitation in decidualized HESCs. LARGE SCALE DATA: N/A. LIMITATIONS, REASONS FOR CAUTION: The functional analysis of PCNA was limited by the number of human endometrial tissues. A larger sample size is required to further explore the potential roles of PCNA during embryo implantation. Moreover, the present results should be taken with caution, as only a few of the embryos that were transferred in RIF patients population underwent preimplantation genetic testing for embryonic chromosome aneuploidies (PGT-A), despite embryo ploidy testing being significant in the diagnosis of unexplained RIF. WIDER IMPLICATIONS OF THESE FINDINGS: High PCNA expression attenuates endometrial adhesive capacity and decidualization in patients with RIF. These findings provide new insights into the potential mechanisms underlying the occurrence of implantation failure. STUDY FUNDING/COMPETING INTEREST(S): This work was supported by the National Natural Science Foundation of China (82101698), Shandong Provincial Natural Science Foundation (ZR2021MH012), and the Science and Technology Plan of Yantai (2023YD021 and 2022YD031). The authors have no conflicts of interest to disclose. TRIAL REGISTRATION NUMBER: N/A.

5.
Pediatr Res ; 2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39375504

RESUMO

BACKGROUND: This study investigates the clinical characteristics and outcomes of pediatric patients with rheumatic diseases infected with COVID-19 in China. METHODS: We conducted a retrospective analysis of pediatric patients with rheumatic diseases who contracted COVID-19. Data were collected via a comprehensive questionnaire with a 14-day follow-up. Multivariable logistic regression was used to assess severe outcomes, and network analyses evaluated symptom correlations. RESULTS: A total of 1070 cases were collected. Fever (88.05%) and cough (62.75%) were the most common symptoms. Cough, nasal congestion, and runny nose exhibited a stronger correlation with each other. A higher incidence of fever reduced the incidence of two single symptoms (nasal congestion [r = -0.833], runny nose [r = -0.762]). Vaccinated children showed a shorter time to negative COVID-19 conversion (7.21 days vs. 7.63 days, p < 0.05) and lower hospitalization rates (p = 0.025). Prolonged symptom duration was associated with older age (OR: 1.07 [1.04-1.11]; p < 0.001) and systemic lupus erythematosus (OR: 1.47 [1.01-2.12]; p = 0.046). CONCLUSIONS: Pediatric patients with rheumatic diseases exhibited a wide range of clinical symptoms after COVID-19 infection. The infection generally did not lead to severe outcomes in this study. COVID-19 vaccination was associated with reduced hospitalization risk and expediting the time to negativity for virus. IMPACTS: This manuscript demonstrates a comprehensive analysis of the clinical characteristics and outcomes of COVID-19 infection in pediatric patients with rheumatic diseases in China. It provides critical insights into the specific challenges faced by this vulnerable population and offers practical recommendations for improving patient management during periods of increased infectious risk.

6.
Crit Rev Immunol ; 43(4): 1-10, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37830189

RESUMO

This study aimed to investigate the potential targets and molecular mechanism of sinomenine in treating allergic rhinitis (AR) using network pharmacology and molecular docking. Relevant targets of sinomenine and AR were obtained from public databases, and differentially expressed genes (DEGs) for AR were identified in the Gene Expression Omnibus database. Using VennDiagram, we identified 22 potential targets of sinomenine against AR by crossing disease targets, drug targets, and DEGs. Functional analysis revealed that sinomenine may act via its anti-inflammatory and immunosuppressive effects, and its action pathways may include the MAPK, HIF-1, and JAK-STAT pathways. Furthermore, hub targets were identified using EPC, MCC, and MNC algorithms, and six hub targets (STAT3, EGFR, NFKB1, HIF1A, PTGS2, and JAK1) were selected by integrating the top 10 hub genes and 22 potential targets. Molecular docking analysis indicated that STAT3, EGFR, PTGS2, and JAK1 may be key targets of sinomenine against AR. Overall, our results suggest that sinomenine has potential therapeutic effects against AR, and its mechanism of action may involve the regulation of key targets and pathways related to inflammation and immunity.


Assuntos
Farmacologia em Rede , Rinite Alérgica , Humanos , Simulação de Acoplamento Molecular , Ciclo-Oxigenase 2/genética , Rinite Alérgica/tratamento farmacológico , Receptores ErbB
7.
Analyst ; 149(16): 4168-4178, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38860637

RESUMO

Helicobacter pylori (H. pylori) is a globally widespread bacterial infection. Early diagnosis of this infection is vital for public and individual health. Prevalent diagnosis methods like the isotope 13C or 14C labelled urea breath test (UBT) are not convenient and may do harm to the human body. The use of cross-response gas sensor arrays (GSAs) is an alternative way for label-free detection of metabolite changes in exhaled breath (EB). However, conventional GSAs are complex to prepare, lack reliability, and fail to discriminate subtle changes in EB due to the use of numerous sensing elements and single dimensional signal. This work presents a dual-element multimodal GSA empowered with multimodal sensing signals including conductance (G), capacitance (C), and dissipation factor (DF) to improve the ability for gas recognition and H. pylori-infection diagnosis. Sensitized by poly(diallyldimethylammonium chloride) (PDDA) and the metal-organic framework material NH2-UiO66, the dual-element graphene oxide (GO)-composite GSAs exhibited a high specific surface area and abundant adsorption sites, resulting in high sensitivity, repeatability, and fast response/recovery speed in all three signals. The multimodal sensing signals with rich sensing features allowed the GSA to detect various physicochemical properties of gas analytes, such as charge transfer and polarization ability, enhancing the sensing capabilities for gas discrimination. The dual-element GSA could differentiate different typical standard gases and non-dehumidified EB samples, demonstrating the advantages in EB analysis. In a case-control clinical study on 52 clinical EB samples, the diagnosis model based on the multimodal GSA achieved an accuracy of 94.1%, a sensitivity of 100%, and a specificity of 90.9% for diagnosing H. pylori infection, offering a promising strategy for developing an accurate, non-invasive and label-free method for disease diagnosis.


Assuntos
Testes Respiratórios , Grafite , Infecções por Helicobacter , Helicobacter pylori , Infecções por Helicobacter/diagnóstico , Infecções por Helicobacter/microbiologia , Humanos , Helicobacter pylori/isolamento & purificação , Testes Respiratórios/métodos , Testes Respiratórios/instrumentação , Grafite/química , Gases/química , Gases/análise , Adulto , Masculino , Pessoa de Meia-Idade , Feminino
8.
Clin Exp Rheumatol ; 42(1): 30-38, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38019149

RESUMO

OBJECTIVES: Increased serum uric acid (SUA) levels are well known to be concomitant of cardiovascular and kidney diseases, and have been proposed to be implicated in the development of arteriolar damage. The aim of the present study was to assess the association between SUA levels, renal damage and its implication for outcome in patients with lupus nephritis (LN). METHODS: This retrospective study included 194 cases with biopsy proven LN at the Affiliated Hospital of Qingdao University between January 2013 and June 2021. We reviewed clinical, laboratory and histologic data of patients and analysed the correlation between SUA levels, renal damage and the primary outcome (death or ESRD). Biopsy-proven arteriolar damage was defined by the presence of arteriolar hyalinosis and/or intimal thickening. RESULTS: Compared to LN patients without hyperuricemia, LN patients with hyperuricaemia presented with higher BP, hyperlipidaemia, lower eGFR, lower haemoglobin, lower serum albumin, worse renal arteriolar damage and proteinuria, and also higher SLEDAI score, activity index and chronicity index (p<0.05). At logistic regression analysis, SUA was independently related to the presence of arteriolar damage. For each 100 µmol/L increase in SUA levels the risk for arteriolar damage raised by 53.8% (hazard ratio [HR] =1.538; 95% CI: 1.147-2.063; p=0.004) after adjustment for haemoglobin, serum creatinine and erythrocyte sedimentation rate. Cox regression analysis showed that female (HR=3.180; 95% CI: 1.216-8.313; p=0.018), white blood cell count (HR=1.111; 95% CI: 1.027-1.202; p=0.009), SUA (HR=1.100; 95% CI: 1.023-1.253; p=0.035), serum creatinine (HR=1.800; 95% CI: 1.348-2.404; p<0.001), and renal arteriolar damage (HR=3.117; 95% CI: 1.022-9.511; p=0.046) was significantly associated with development of ESRD or death in patients with LN after adjustment for several potential confounding factors. Furthermore, for each 100 µmol/L increase in SUA levels, the risk of ESRD or death increased by 10%. CONCLUSIONS: SUA levels are directly associated with renal arteriolar damage and poor prognosis in LN patients. Hyperuricaemia is an important predictor for poor prognosis in patients with LN.


Assuntos
Hiperuricemia , Falência Renal Crônica , Nefrite Lúpica , Humanos , Feminino , Nefrite Lúpica/complicações , Nefrite Lúpica/diagnóstico , Nefrite Lúpica/patologia , Ácido Úrico , Hiperuricemia/complicações , Hiperuricemia/diagnóstico , Estudos Retrospectivos , Creatinina , Rim/patologia , Hemoglobinas , Fatores de Risco
9.
Brain ; 146(10): 4274-4291, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37284790

RESUMO

Migraine, especially chronic migraine, is highly debilitating and still lacks effective treatment. The persistent headache arises from activation and sensitization of primary afferent neurons in the trigeminovascular pathway, but the underlying mechanisms remain incompletely understood. Animal studies indicate that signalling through chemokine C-C motif ligand 2 (CCL2) and C-C motif chemokine receptor 2 (CCR2) mediates the development of chronic pain after tissue or nerve injury. Some migraine patients had elevated CCL2 levels in CSF or cranial periosteum. However, whether the CCL2-CCR2 signalling pathway contributes to chronic migraine is not clear. Here, we modelled chronic headache with repeated administration of nitroglycerin (NTG, a reliable migraine trigger in migraineurs) and found that both Ccl2 and Ccr2 mRNA were upregulated in dura and trigeminal ganglion (TG) tissues that are implicated in migraine pathophysiology. In Ccl2 and Ccr2 global knockout mice, repeated NTG administration did not evoke acute or persistent facial skin hypersensitivity as in wild-type mice. Intraperitoneal injection of CCL2 neutralizing antibodies inhibited chronic headache-related behaviours induced by repeated NTG administration and repetitive restraint stress, suggesting that the peripheral CCL2-CCR2 signalling mediates headache chronification. We found that CCL2 was mainly expressed in TG neurons and cells associated with dura blood vessels, whereas CCR2 was expressed in subsets of macrophages and T cells in TG and dura but not in TG neurons under both control and disease states. Deletion of Ccr2 gene in primary afferent neurons did not alter NTG-induced sensitization, but eliminating CCR2 expression in either T cells or myeloid cells abolished NTG-induced behaviours, indicating that both CCL2-CCR2 signalling in T cells and macrophages are required to establish chronic headache-related sensitization. At cellular level, repeated NTG administration increased the number of TG neurons that responded to calcitonin-gene-related peptide (CGRP) and pituitary adenylate cyclase activating polypeptide (PACAP) as well as the production of CGRP in wild-type but not Ccr2 global knockout mice. Lastly, co-administration of CCL2 and CGRP neutralizing antibodies was more effective in reversing NTG-induced behaviours than individual antibodies. Taken together, these results suggest that migraine triggers activate CCL2-CCR2 signalling in macrophages and T cells. This consequently enhances both CGRP and PACAP signalling in TG neurons, ultimately leading to persistent neuronal sensitization underlying chronic headache. Our work not only identifies the peripheral CCL2 and CCR2 as potential targets for chronic migraine therapy, but also provides proof-of-concept that inhibition of both peripheral CGRP and CCL2-CCR2 signalling is more effective than targeting either pathway alone.


Assuntos
Quimiocina CCL2 , Transtornos de Enxaqueca , Receptores CCR2 , Animais , Camundongos , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Cefaleia , Camundongos Knockout , Transtornos de Enxaqueca/genética , Transtornos de Enxaqueca/metabolismo , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Receptores de Quimiocinas
10.
Acta Pharmacol Sin ; 45(4): 661-673, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38102221

RESUMO

Although great efforts have been made to elucidate the pathological mechanisms of renal diseases and potential prevention and treatment targets that would allow us to retard kidney disease progression, we still lack specific and effective management methods. Epigenetic mechanisms are able to alter gene expression without requiring DNA mutations. Accumulating evidence suggests the critical roles of epigenetic events and processes in a variety of renal diseases, involving functionally relevant alterations in DNA methylation, histone methylation, RNA methylation, and expression of various non-coding RNAs. In this review, we highlight recent advances in the impact of methylation events (especially RNA m6A methylation, DNA methylation, and histone methylation) on renal disease progression, and their impact on treatments of renal diseases. We believe that a better understanding of methylation modification changes in kidneys may contribute to the development of novel strategies for the prevention and management of renal diseases.


Assuntos
Metilação de DNA , Nefropatias , Metilação de RNA , Humanos , Progressão da Doença , Epigênese Genética , Histonas/metabolismo , Nefropatias/genética , Nefropatias/metabolismo
11.
Acta Pharmacol Sin ; 45(3): 502-516, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37880338

RESUMO

Olanzapine (OLZ) is a widely prescribed antipsychotic drug with a relatively ideal effect in the treatment of schizophrenia (SCZ). However, its severe metabolic side effects often deteriorate clinical therapeutic compliance and mental rehabilitation. The peripheral mechanism of OLZ-induced metabolic disorders remains abstruse for its muti-target activities. Endoplasmic reticulum (ER) stress is implicated in cellular energy metabolism and the progression of psychiatric disorders. In this study, we investigated the role of ER stress in the development of OLZ-induced dyslipidemia. A cohort of 146 SCZ patients receiving OLZ monotherapy was recruited, and blood samples and clinical data were collected at baseline, and in the 4th week, 12th week, and 24th week of the treatment. This case-control study revealed that OLZ treatment significantly elevated serum levels of endoplasmic reticulum (ER) stress markers GRP78, ATF4, and CHOP in SCZ patients with dyslipidemia. In HepG2 cells, treatment with OLZ (25, 50 µM) dose-dependently enhanced hepatic de novo lipogenesis accompanied by SREBPs activation, and simultaneously triggered ER stress. Inhibition of ER stress by tauroursodeoxycholate (TUDCA) and 4-phenyl butyric acid (4-PBA) attenuated OLZ-induced lipid dysregulation in vitro and in vivo. Moreover, we demonstrated that activation of PERK-CHOP signaling during ER stress was a major contributor to OLZ-triggered abnormal lipid metabolism in the liver, suggesting that PERK could be a potential target for ameliorating the development of OLZ-mediated lipid dysfunction. Taken together, ER stress inhibitors could be a potentially effective intervention against OLZ-induced dyslipidemia in SCZ.


Assuntos
Dislipidemias , Transdução de Sinais , Humanos , Olanzapina/farmacologia , Estudos de Casos e Controles , Estresse do Retículo Endoplasmático , Dislipidemias/induzido quimicamente , Lipídeos , eIF-2 Quinase/metabolismo , Apoptose
12.
Clin Exp Nephrol ; 28(8): 740-750, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38709377

RESUMO

OBJECTIVE: To investigate the predictors and establish a nomogram model for the prediction of the response to treatment in primary membranous nephropathy (PMN) with nephrotic syndrome (NS). METHODS: The clinical, laboratory, pathological and follow-up data of patients with biopsy-proven membranous nephropathy at the Affiliated Hospital of Qingdao University were collected. A total of 373 patients were randomly assigned into development group (n = 262) and validation group (n = 111). Logistic regression analysis was performed in the development group to determine the predictors of treatment response. A nomogram model was established based on the multivariate logistic regression analysis and validated in the validation group. The C-index and calibration plots were used for the evaluation of the discrimination and calibration performance, respectively. RESULTS: Serum albumin levels (OR = 1.151, 95% CI 1.078-1.229, P < 0.001) and glomerular C3 deposition (OR = 0.407, 95% CI 0.213-0.775, P = 0.004) were identified as independent predictive factors for treatment response in PMN with NS, then a nomogram was established combining the above indicators and treatment regimen. The C-indices of this model were 0.718 (95% CI 0.654-0.782) and 0.789 (95% CI 0.705-0.873) in the development and validation groups, respectively. The calibration plots showed that the predicted probabilities of the model were consistent with the actual probabilities (P > 0.05), which indicated favorable performance of this model in predicting the treatment response probability. CONCLUSIONS: Serum albumin levels and glomerular C3 deposition were predictors for treatment response of PMN with NS. A novel nomogram model with good discrimination and calibration was constructed to predict treatment response probability at an early stage.


Assuntos
Glomerulonefrite Membranosa , Síndrome Nefrótica , Nomogramas , Humanos , Glomerulonefrite Membranosa/tratamento farmacológico , Glomerulonefrite Membranosa/complicações , Masculino , Síndrome Nefrótica/complicações , Síndrome Nefrótica/tratamento farmacológico , Feminino , Pessoa de Meia-Idade , Adulto , Resultado do Tratamento , Complemento C3/análise , Albumina Sérica Humana/análise , Estudos Retrospectivos , Albumina Sérica/análise , Valor Preditivo dos Testes , Modelos Logísticos , Imunossupressores/uso terapêutico , Reprodutibilidade dos Testes , China
13.
Int Endod J ; 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-39031653

RESUMO

AIM: This study investigated the effects of the inflammatory microenvironment of moderate pulpitis on biological properties of human dental pulp stem cells (DPSCs) and further explored the mechanism involved in osteo-/odontogenic induction of the inflammatory microenvironment. METHODOLOGY: Healthy DPSCs (hDPSCs) and inflammatory DPSCs (iDPSCs) were isolated from human-impacted third molars free of caries and clinically diagnosed with moderate pulpitis, respectively. Healthy DPSCs were treated with lipopolysaccharides (LPS) to mimic iDPSCs in vitro. The surface markers expressed on hDPSCs and iDPSCs were detected by flow cytometry. A CCK-8 assay was performed to determine cell proliferation. Flow cytometric analysis was used to evaluate cell apoptosis. The osteo-/odontogenic differentiation of DPSCs was evaluated by western blot, alkaline phosphatase staining, and Alizarin Red S staining. The functions of the genes of differentially expressed mRNAs of hDPSCs and iDPSCs were analysed using gene set enrichment analysis. Transmission electron microscopy and western blot were used to evaluate the autophagy changes of LPS-treated DPSCs. RESULTS: Compared with hDPSCs, iDPSCs showed no significant difference in proliferative capacity but had stronger osteo-/odontogenic potential. In addition, the mRNAs differentially expressed between iDPSCs and hDPSCs were considerably enriched in autophagosome formation and assembly-related molecules. In vitro mechanism studies further found that low concentrations of LPS could upregulate DPSC autophagy-related protein expression and autophagosome formation and promote its odontogenic/osteogenic differentiation, whereas the inhibition of DPSC autophagy led to the weakening of the odontogenic/osteogenic differentiation induced by LPS. CONCLUSIONS: This explorative study showed that DPSCs isolated from teeth with moderate pulpitis possessed higher osteo-/odontogenic differentiation capacity, and the mechanism involved was related to the inflammatory microenvironment-mediated autophagy of DPSCs. This helps to better understand the repair potential of inflamed dental pulp and provides the biological basis for pulp preservation and hard tissue formation in minimally invasive endodontics.

14.
Pestic Biochem Physiol ; 200: 105831, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38582594

RESUMO

Paraquat (PQ) causes fatal poisoning that leads to systemic multiple organ fibrosis, and transforming growth factor (TGF)-ß1 plays a critical role in this process. In this study, we aimed to investigate the effects of AZ12601011 (a small molecular inhibitor of TGFßRI) on PQ-induced multiple organ fibrosis. We established a mouse model of PQ in vivo and used PQ-treated lung epithelial cell (A549) and renal tubular epithelial cells (TECs) in vitro. Haematoxylin-eosin and Masson staining revealed that AZ12601011 ameliorated pulmonary, hepatic, and renal fibrosis, consistent with the decrease in the levels of fibrotic indicators, alpha-smooth muscle actin (α-SMA) and collagen-1, in the lungs and kidneys of PQ-treated mice. In vitro data showed that AZ12601011 suppressed the induction of α-SMA and collagen-1 in PQ-treated A549 cells and TECs. In addition, AZ12601011 inhibited the release of inflammatory factors, interleukin (IL)-1ß, IL-6, and tumour necrosis factor-α. Mechanistically, TGF-ß and TGFßRI levels were significantly upregulated in the lungs and kidneys of PQ-treated mice. Cellular thermal shift assay and western blotting revealed that AZ12601011 directly bound with TGFßRI and blocked the activation of Smad3 downstream. In conclusion, our findings revealed that AZ12601011 attenuated PQ-induced multiple organ fibrosis by blocking the TGF-ß/Smad3 signalling pathway, suggesting its potential for PQ poisoning treatment.


Assuntos
Lesão Pulmonar Aguda , Paraquat , Fibrose Pulmonar , Camundongos , Animais , Paraquat/toxicidade , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo I , Fator de Crescimento Transformador beta/toxicidade , Fator de Crescimento Transformador beta1/toxicidade , Fator de Crescimento Transformador beta1/metabolismo , Colágeno/toxicidade , Colágeno/metabolismo , Fatores de Crescimento Transformadores/toxicidade
15.
Ren Fail ; 46(1): 2353341, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38832502

RESUMO

This systematic review aimed to statistically profile the medication burden and associated influencing factors, and outcomes in patients with dialysis-dependent chronic kidney disease (DD-CKD). Studies of medication burden in patients with DD-CKD in the last 10 years from 1 January 2013 to 31 March 2024 were searched from PubMed, Embase, and Cochrane databases. Newcastle-Ottawa Scale (NOS) or Agency for Healthcare Research and Quality (AHRQ) methodology checklist was used to evaluate quality and bias. Data extraction and combining from multiple groups of number (n), mean, and standard deviation (SD) were performed using R programming language (version4.3.1; R Core Team, Vienna, Austria). A total of 10 studies were included, and the results showed a higher drug burden in patients with DD-CKD. The combined pill burden was 14.57 ± 7.56 per day in hemodialysis (HD) patients and 14.63 ± 6.32 in peritoneal dialysis (PD) patients. The combined number of medications was 9.74 ± 3.37 in HD and 8 ± 3 in PD. Four studies described the various drug classes and their proportions, in general, antihypertensives and phosphate binders were the most commonly used drugs. Five studies mentioned factors associated with medication burden. A total of five studies mentioned medication burden-related outcomes, with one study finding that medication-related burden was associated with increased treatment burden, three studies finding that poor medication adherence was associated with medication burden, and another study finding that medication complexity was not associated with self-reported medication adherence. Limitations: meta-analysis was not possible due to the heterogeneity of studies.


Assuntos
Diálise Renal , Insuficiência Renal Crônica , Humanos , Insuficiência Renal Crônica/terapia , Insuficiência Renal Crônica/complicações , Diálise Peritoneal , Adesão à Medicação/estatística & dados numéricos
16.
Drug Dev Res ; 85(4): e22198, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38764200

RESUMO

Hepatocellular carcinoma (HCC) is one of the deadliest cancers. The prevention and therapy for this deadly disease remain a global medical challenge. In this study, we investigated the effect of pantoprazole (PPZ) on the carcinogenesis and growth of HCC. Both diethylnitrosamine (DEN) plus CCl4-induced and DEN plus high fat diet (HFD)-induced HCC models in mice were established. Cytokines and cell proliferation-associated gene in the liver tissues of mice and HCC cells were analyzed. Cellular glycolysis and Na+/H+ exchange activity were measured. The preventive administration of pantoprazole (PPZ) at a clinically relevant low dose markedly suppressed HCC carcinogenesis in both DEN plus CCl4-induced and HFD-induced murine HCC models, whereas the therapeutic administration of PPZ at the dose suppressed the growth of HCC. In the liver tissues of PPZ-treated mice, inflammatory cytokines, IL1, CXCL1, CXCL5, CXCL9, CXCL10, CCL2, CCL5, CCL6, CCL7, CCL20, and CCL22, were reduced. The administration of CXCL1, CXCL5, CCL2, or CCL20 all reversed PPZ-suppressed DEN plus CCL4-induced HCC carcinogenesis in mice. PPZ inhibited the expressions of CCNA2, CCNB2, CCNE2, CDC25C, CDCA5, CDK1, CDK2, TOP2A, TTK, AURKA, and BIRC5 in HCC cells. Further results showed that PPZ reduced the production of these inflammatory cytokines and the expression of these cell proliferation-associated genes through the inhibition of glycolysis and Na+/H+ exchange. In conclusion, PPZ suppresses the carcinogenesis and growth of HCC, which is related to inhibiting the production of inflammatory cytokines and the expression of cell proliferation-associated genes in the liver through the inhibition of glycolysis and Na+/H+ exchange.


Assuntos
Carcinoma Hepatocelular , Proliferação de Células , Glicólise , Neoplasias Hepáticas , Pantoprazol , Animais , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/induzido quimicamente , Carcinoma Hepatocelular/metabolismo , Glicólise/efeitos dos fármacos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/induzido quimicamente , Neoplasias Hepáticas/metabolismo , Camundongos , Pantoprazol/farmacologia , Masculino , Proliferação de Células/efeitos dos fármacos , Humanos , Camundongos Endogâmicos C57BL , Carcinogênese/efeitos dos fármacos , Dietilnitrosamina/toxicidade , Citocinas/metabolismo , Linhagem Celular Tumoral , Dieta Hiperlipídica/efeitos adversos
17.
J Environ Manage ; 365: 121681, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38963966

RESUMO

The denitrification process in aquaculture systems plays a crucial role in nitrogen (N) cycle and N budget estimation. Reliable models are needed to rapidly quantify denitrification rates and assess nitrogen losses. This study conducted a comparative analysis of denitrification rates in fish, crabs, and natural ponds in the Taihu region from March to November 2021, covering a complete aquaculture cycle. The results revealed that aquaculture ponds exhibited higher denitrification rates compared to natural ponds. Key variables influencing denitrification rates were Nitrate nitrogen (NO3--N), Suspended particles (SPS), and chlorophyll a (Chla). There was a significant positive correlation between SPS concentration and denitrification rates. However, we observed that the denitrification rate initially rose with increasing Chla concentration, followed by a subsequent decline. To develop parsimonious models for denitrification rates in aquaculture ponds, we constructed five different statistical models to predict denitrification rates, among which the improved quadratic polynomial regression model (SQPR) that incorporated the three key parameters accounted for 80.7% of the variability in denitrification rates. Additionally, a remote sensing model (RSM) utilizing SPS and Chla explained 43.8% of the variability. The RSM model is particularly valuable for rapid estimation in large regions where remote sensing data are the only available source. This study enhances the understanding of denitrification processes in aquaculture systems, introduces a new model for estimating denitrification in aquaculture ponds, and offers valuable insights for environmental management.


Assuntos
Aquicultura , Clorofila A , Desnitrificação , Lagoas , Clorofila A/metabolismo , Nitrogênio/metabolismo , Nitratos/metabolismo , Clorofila/metabolismo
18.
Molecules ; 29(18)2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39339423

RESUMO

The development of epoxy resins is mainly dependent on non-renewable petroleum resources, commonly diglycidyl ether bisphenol A (DGEBA)-type epoxy monomers. Most raw materials of these thermoset resins are toxic to the health of human beings. To alleviate concerns about the environment and health, the design and synthesis of bio-based epoxy resins using biomass as raw materials have been widely studied in recent decades to replace petroleum-based epoxy resins. With the improvement in the requirements for the performance of bio-based epoxy resins, the design of bio-based epoxy resins with unique functions has attracted a lot of attention, and bio-based epoxy resins with flame-retardant, recyclable/degradable/reprocessable, antibacterial, and other functional bio-based epoxy resins have been developed to expand the applications of epoxy resins and improve their competitiveness. This review summarizes the research progress of functional bio-based epoxy resins in recent years. First, bio-based epoxy resins were classified according to their unique function, and synthesis strategies of functional bio-based epoxy resins were discussed, then the relationship between structure and performance was revealed to guide the synthesis of functional bio-based epoxy resins and stimulate the development of more types of functional bio-based epoxy resins. Finally, the challenges and opportunities in the development of functional bio-based epoxy resins are presented.


Assuntos
Resinas Epóxi , Resinas Epóxi/química , Resinas Epóxi/síntese química , Compostos de Epóxi/química , Humanos , Biomassa , Compostos Benzidrílicos/química , Retardadores de Chama/síntese química
19.
Clin Otolaryngol ; 2024 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-39434677

RESUMO

OBJECTIVE: This study aims to explore the role of serum aquaporin 8 (AQP8) expression in evaluating the degree of hydrolabyrinth and predicting prognosis in patients with Meniere's disease. METHODS: One hundred and five patients diagnosed with Meniere's disease in our hospital were enrolled in the Meniere's disease group. Another 102 healthy subjects were enrolled as the control group. The expression of serum AQP8 mRNA was determined by the quantitative real-time PCR (qRT-PCR) method. Receiver operating characteristic (ROC) curve analysis was carried out to analyse the predictive value of serum AQP8 mRNA expression for poor prognosis in Meniere's disease patients. Multivariate logistic regression was used to analyse the influencing factors of poor prognosis in patients with Meniere's disease. RESULTS: The expression level of serum AQP8 mRNA in the Meniere's disease group was significantly higher than that in the control group (p < 0.05). In the severe hydrops group, serum AQP8 mRNA expression levels were higher than in the mild hydrops group and the no endolymphatic hydrops group. Additionally, the mild hydrops group had higher serum AQP8 mRNA levels than the no endolymphatic hydrops group (p < 0.05). The disease course, proportion of severe hydrops and serum AQP8 mRNA expression were all higher in the poor prognosis group compared to the good prognosis group (p < 0.05). The area under the curve (AUC) for serum AQP8 mRNA in predicting poor prognosis in Meniere's disease patients was 0.812 (95%CI: 0.702-0.922). CONCLUSION: AQP8 mRNA is associated with the degree of hydrolabyrinth in patients with Meniere's disease and plays an important role in predicting prognosis.

20.
Mol Med ; 29(1): 146, 2023 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-37884902

RESUMO

BACKGROUND: Epithelial-mesenchymal transition (EMT) plays a key role in tubulointerstitial fibrosis, which is a hallmark of diabetic kidney disease (DKD). Our previous studies showed that CRTC2 can simultaneously regulate glucose metabolism and lipid metabolism. However, it is still unclear whether CRTC2 participates in the EMT process in DKD. METHODS: We used protein‒protein network (PPI) analysis to identify genes that were differentially expressed during DKD and EMT. Then, we constructed a diabetic mouse model by administering STZ plus a high-fat diet, and we used HK-2 cells that were verified to confirm the bioinformatics research results. The effects that were exerted by CRTC2 on epithelial-mesenchymal transition in diabetic kidney disease through the CREB-Smad2/3 signaling pathway were investigated in vivo and in vitro by real-time PCR, WB, IHC and double luciferase reporter gene experiments. RESULTS: First, bioinformatics research showed that CRTC2 may promote EMT in diabetic renal tubules through the CREB-Smad2/3 signaling pathway. Furthermore, the Western blotting and real-time PCR results showed that CRTC2 overexpression reduced the expression of E-cadherin in HK-2 cells. The CRTC2 and α-SMA levels were increased in STZ-treated mouse kidneys, and the E-cadherin level was reduced. The luciferase activity of α-SMA, which is the key protein in EMT, was sharply increased in response to the overexpression of CRTC2 and decreased after the silencing of CREB and Smad2/3. However, the expression of E-cadherin showed the opposite trends. In the real-time PCR experiment, the mRNA expression of α-SMA increased significantly when CRTC2 was overexpressed but partially decreased when CREB and Smad2/3 were silenced. However, E-cadherin expression showed the opposite result. CONCLUSION: This study demonstrated that CRTC2 activates the EMT process via the CREB-Smad2/3 signaling pathway in diabetic renal tubules.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Fatores de Transcrição , Animais , Camundongos , Caderinas/metabolismo , Diabetes Mellitus/metabolismo , Nefropatias Diabéticas/patologia , Células Epiteliais/metabolismo , Transição Epitelial-Mesenquimal , Fibrose , Rim/metabolismo , Túbulos Renais/patologia , Luciferases/metabolismo , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA