Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Molecules ; 29(4)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38398519

RESUMO

To enhance the bioavailability and antihypertensive effect of the anti-depressant drug citalopram hydrobromide (CTH) we developed a sustained-release transdermal delivery system containing CTH. A transdermal diffusion meter was first used to determine the optimal formulation of the CTH transdermal drug delivery system (TDDS). Then, based on the determined formulation, a sustained-release patch was prepared; its physical characteristics, including quality, stickiness, and appearance, were evaluated, and its pharmacokinetics and irritation to the skin were evaluated by applying it to rabbits and rats. The optimal formulation of the CTH TDDS was 49.2% hydroxypropyl methyl cellulose K100M, 32.8% polyvinylpyrrolidone K30, 16% oleic acid-azone, and 2% polyacrylic acid resin II. The system continuously released an effective dose of CTH for 24 h and significantly enhanced its bioavailability, with a higher area under the curve, good stability, and no skin irritation. The developed CTH TDDS possessed a sustained-release effect and good characteristics and pharmacokinetics; therefore, it has the potential for clinical application as an antidepressant.


Assuntos
Citalopram , Absorção Cutânea , Ratos , Coelhos , Animais , Citalopram/farmacologia , Citalopram/metabolismo , Preparações de Ação Retardada/farmacologia , Administração Cutânea , Pele , Sistemas de Liberação de Medicamentos , Adesivo Transdérmico
2.
Nutr Neurosci ; 25(5): 1001-1010, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-33078688

RESUMO

OBJECTIVE: To investigate the effect of maternal zinc deficiency on learning and memory in offspring and the changes in DNA methylation patterns. METHODS: Pregnant rats were divided into zinc adequate (ZA), zinc deficient (ZD), and paired fed (PF) groups. Serum zinc contents and AKP activity in mother rats and offspring at P21 (end of lactation) and P60 (weaned, adult) were detected. Cognitive ability of offspring at P21 and P60 were determined by Morris water maze. The expression of proteins including DNMT3a, DNMT1, GADD45ß, MeCP2 and BDNF in the offspring hippocampus were detected by Western-blot. The methylation status of BDNF promoter region in hippocampus of offspring rats was detected by MS-qPCR. RESULTS: Compared with the ZA and PF groups, pups in the ZD group had lower zinc levels and AKP activity in the serum, spent more time finding the platform and spent less time going through the platform area. Protein expression of DNMT1 and GADD45b were downregulated in the ZD group during P0 and P21 but not P60 compared with the ZA and PF group, these results were consistent with a reduction in BDNF protein at P0 (neonate), P21. However, when pups of rats in the ZD group were supplemented with zinc ion from P21 to P60, MeCP2 and GADD45b expression were significantly downregulated compared with the ZA and PF group. CONCLUSION: Post-weaning zinc supplementation may improve cognitive impairment induced by early life zinc deficiency, whereas it may not completely reverse the abnormal expression of particular genes that are involved in DNA methylation, binding to methylated DNA and neurogenesis.


Assuntos
Metilação de DNA , Desnutrição , Animais , Antígenos de Diferenciação/genética , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Feminino , Hipocampo/metabolismo , Aprendizagem , Desnutrição/metabolismo , Gravidez , Ratos , Zinco
3.
Int J Mol Sci ; 23(21)2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36361834

RESUMO

In this study, we developed a sustained-release transdermal delivery system containing losartan potassium (LP) and verapamil hydrochloride (VPH). LP and VPH have low bioavailability and long half-life. Therefore, the development of an optimum administration mode is necessary to overcome these drawbacks and enhance the antihypertensive effect. A transdermal diffusion meter was used to determine the optimal formulation of LP-VPH transdermal drug delivery systems (TDDS). Based on in vitro results, a sustained-release patch was prepared. Physical characteristics, including quality, stickiness, and appearance, were evaluated in vitro, while pharmacokinetics and skin irritation were evaluated in vivo. The results showed that 8.3% polyvinyl alcohol, 74.7% polyvinylpyrrolidone K30, 12% oleic acid-azone, and 5% polyacrylic acid resin II provided an optimized TDDS product for effective administration of LP and VPH. Furthermore, in vitro and in vivo release tests showed that the system continuously released LP and VPH for 24 h. The pharmacokinetic results indicated that although the maximum concentration was lower, both the area under the curve from 0-time and the mean residence time of the prepared patch were significantly higher than those of the oral preparations. Furthermore, the prepared LP-VPH transdermal patch showed good stability and no skin irritation. The developed LP-VPH TDDS showed a sustained-release effect and good characteristics and pharmacokinetics; therefore, it is an ideal formulation.


Assuntos
Losartan , Verapamil , Preparações de Ação Retardada/farmacocinética , Absorção Cutânea , Administração Cutânea , Sistemas de Liberação de Medicamentos/métodos
4.
Arch Biochem Biophys ; 693: 108561, 2020 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-32857999

RESUMO

PURPOSE: To explore genistein, the most active component of soy isoflavones, on viability, expression of estrogen receptor (ER) subtypes, choline acetyltransferase (ChAT), and glutamate receptor subunits in amyloid peptide 25-35-induced hippocampal neurons, providing valuable data and basic information for neuroprotective effect of genistein in Aß25-35-induced neuronal injury. METHODS: We established an in vitro model of Alzheimer's disease by exposing primary hippocampal neurons of newborn rats to amyloid peptide 25-35 (20 µM) for 24 h and observing the effects of genistein (10 µM, 3 h) on viability, expression of ER subtypes, ChAT, NMDA receptor subunit NR2B and AMPA receptor subunit GluR2 in Aß25-35-induced hippocampal neurons. RESULTS: We found that amyloid peptide 25-35 exposure reduced the viability of hippocampal neurons. Meanwhile, amyloid peptide 25-35 exposure decreased the expression of ER subtypes, ChAT and GluR2, and increased the expression of NR2B. Genistein at least partially reversed the effects of amyloid peptide 25-35 in hippocampal neurons. CONCLUSION: Genistein could increase the expression of ChAT as a consequence of activating estrogen receptor subtypes, modulating the expression of NR2B and GluR2, and thereby ameliorating the status of hippocampal neurons and exerting neuroprotective effects against amyloid peptide 25-35. Our data suggest that genistein might represent a potential cell-targeted therapy which could be a promising approach to treating AD.


Assuntos
Peptídeos beta-Amiloides/antagonistas & inibidores , Morte Celular/fisiologia , Colina O-Acetiltransferase/antagonistas & inibidores , Genisteína/farmacologia , Neurônios/efeitos dos fármacos , Fragmentos de Peptídeos/antagonistas & inibidores , Receptores de Estrogênio/efeitos dos fármacos , Receptores de Glutamato/efeitos dos fármacos , Peptídeos beta-Amiloides/fisiologia , Animais , Neurônios/citologia , Neurônios/enzimologia , Neurônios/metabolismo , Fragmentos de Peptídeos/fisiologia , Ratos , Ratos Wistar
5.
J Biochem Mol Toxicol ; 34(7): e22499, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32202049

RESUMO

The present study elucidates the possible protective effects of curcumin on ß-cells damaged by oxidative stress and its significance in controlling diabetes mellitus in in vitro experiments. Pancreatic islet (RIN-m5F) cells were treated with 25 mmol/L alloxan (AXN) to induce cell damage and the protective effects of curcumin were observed. The results showed that curcumin significantly promoted the cellular activity of AXN-treated RIN-m5F cells, decreased the ratio of apoptosis, downregulated the level of malondialdehyde, upregulated the levels of superoxide dismutase and reactive oxygen species, increased the expression of Bcl-2, cleaved caspase-3, and cleaved PARP1, and decreased the expression of Bax in AXN-treated cells. These results suggest that curcumin inhibits AXN-induced damage in RIN-m5F cells via antioxidative and antiapoptotic mechanisms.


Assuntos
Aloxano/efeitos adversos , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Curcumina/farmacologia , Células Secretoras de Insulina/efeitos dos fármacos , Animais , Caspase 3/metabolismo , Linhagem Celular , Células Secretoras de Insulina/metabolismo , Malondialdeído/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Poli(ADP-Ribose) Polimerase-1/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Superóxido Dismutase/metabolismo , Proteína X Associada a bcl-2/metabolismo
6.
Molecules ; 25(2)2020 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-31936547

RESUMO

Curcumin is the main secondary metabolite of Curcuma longa and other Curcuma spp, and has been reported to have some potential in preventing and treating some physiological disorders. This study investigated the effect of curcumin in inhibiting high-fat diet and streptozotocin (STZ)-induced hyperglycemia and hyperlipidemia in rats. Twenty-six male Sprague-Dawley (SD) rats (170-190 g) were randomly divided into a standard food pellet diet group (Control group), a high-fat diet and streptozotocin group (HF + STZ group), and a high-fat diet combined with curcumin and STZ group (HF + Cur + STZ group). Compared with the HF + STZ group, the HF + Cur + STZ group exhibited significantly reduced fasting blood glucose (FBG), total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), alanine aminotransferase (AST), and aspartate transaminase (ALT) levels, as well as liver coefficients. In the livers of these rats, the expression of malondialdehyde (MDA) and Bax was downregulated, whereas that of superoxide dismutase (SOD) and Bcl-2 was upregulated. Moreover, the liver histology of these rats was improved and resembled that of the control rats. These results suggest that curcumin prevents high-fat diet and STZ-induced hyperglycemia and hyperlipidemia, mainly via anti-oxidant and anti-apoptotic mechanisms in the liver.


Assuntos
Curcumina/farmacologia , Hiperglicemia/tratamento farmacológico , Hiperlipidemias/tratamento farmacológico , Extratos Vegetais/farmacologia , Alanina Transaminase/sangue , Animais , Aspartato Aminotransferases/sangue , Glicemia , Curcuma/química , Dieta Hiperlipídica/efeitos adversos , Humanos , Hiperglicemia/sangue , Hiperglicemia/induzido quimicamente , Hiperglicemia/patologia , Hiperlipidemias/sangue , Hiperlipidemias/induzido quimicamente , Hiperlipidemias/patologia , Lipídeos/sangue , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Extratos Vegetais/química , Ratos , Estreptozocina/toxicidade , Superóxido Dismutase/metabolismo , Triglicerídeos/sangue
7.
Dev Neurosci ; 41(3-4): 203-211, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31536986

RESUMO

The Papez circuit is crucial for several brain functions, including long-term memory and emotion. Estradiol modulates cognitive functions based on the expression pattern of its receptor subtypes including estrogen receptor (ER) α, ß, and G protein-coupled receptor 30 (GPR30). Similarly, the activity in the cholinergic system correlates with several brain functions, such as learning and memory. In this study, we used immunofluorescence to examine the expression patterns of ERß and Western blotting to analyze GPR30 and choline acetyltransferase (ChAT) expression, in different regions of the Papez circuit, including the prefrontal cortex, hippocampus, hypothalamus, anterior nucleus of the thalamus, and cingulum in female rats at postnatal days (PND) 1, 10, and 56. Our main finding was that the highest expression of ERß and GPR30 was noted in each brain area of the Papez circuit in the PND1 rats, whereas the expression of ChAT was the highest in PND10 rats. These results provide vital information on the postnatal expression patterns of ER subtypes and ChAT in different regions of the Papez circuit.


Assuntos
Colina O-Acetiltransferase/metabolismo , Hipocampo/metabolismo , Rede Nervosa/metabolismo , Receptores de Estrogênio/metabolismo , Animais , Estradiol/metabolismo , Estrogênios/metabolismo , Memória/fisiologia , Córtex Pré-Frontal/metabolismo , Ratos
8.
Cell Mol Neurobiol ; 39(6): 809-822, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31037516

RESUMO

We established a model of Alzheimer's disease in vitro by exposing primary hippocampal neurons of neonatal Wistar rats to the ß-Amyloid peptide fragment 25-35, Aß25-35. We then observed the effects of genistein, a type of soybean isoflavone, on Aß25-35-incubated hippocampal neuron viability, and the electrophysiological properties of voltage-gated sodium channels (NaV) and potassium channels (KV) in the hippocampal neurons. Aß25-35 exposure reduced the viability of hippocampal neurons, decreased the peak amplitude of voltage-activated sodium channel currents (INa), and significantly reduced INa at different membrane potentials. Moreover, Aß25-35 shifted the activation curve toward depolarization, shifted the inactivation curve toward hyperpolarization, and increased the time constant of recovery from inactivation. Aß25-35 exposure significantly shifted the inactivation curve of transient outward K+ currents (IA) toward hyperpolarization and increased its time constant of recovery from inactivation. In addition, Aß25-35 significantly decreased the peak density of outward-delayed rectifier potassium channel currents (IDR) and significantly reduced IDR value at different membrane potentials. We found that genistein partially reversed the decrease in hippocampal neuron viability, and the alterations in electrophysiological properties of NaV and KV induced by Aß25-35. Our results suggest that genistein could inhibit Aß25-35-induced neuronal damage with changes in the electrophysiological properties of NaV and KV.


Assuntos
Peptídeos beta-Amiloides/toxicidade , Fenômenos Eletrofisiológicos/efeitos dos fármacos , Genisteína/farmacologia , Neurônios/metabolismo , Neurônios/patologia , Fragmentos de Peptídeos/toxicidade , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Canais de Sódio Disparados por Voltagem/metabolismo , Animais , Morte Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Hipocampo/patologia , Ativação do Canal Iônico/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Ratos Wistar
9.
Phytother Res ; 33(2): 431-441, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30450837

RESUMO

In this study, we investigated the protective effects of genistein against SH-SY5Y cell damage induced by ß-amyloid 25-35 peptide (Aß25-35 ) and the underlying mechanisms. Aß-induced neuronal death, apoptosis, glutamate receptor subunit expression, Ca2+ ion concentration, amino acid transmitter concentration, and apoptosis-related factor expression were evaluated to determine the effects of genistein on Aß-induced neuronal death and apoptosis. The results showed that genistein increased the survival of SH-SY5Y cells and decreased the level of apoptosis induced by Aß25-35 . In addition, genistein reversed the Aß25-35 -induced changes in amino acid transmitters, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptors, and N-methyl-d-aspartate (NMDA) receptor subunits in SH-SY5Y cells. Aß25-35 -induced changes in Ca2+ and B-cell lymphoma-2 (Bcl-2) and Bcl-2-associated X (Bax) protein and gene levels in cells were also reversed by genistein. Our data suggest that genistein protects against Aß25-35 -induced damage in SH-SY5Y cells, possibly by regulating the expression of apoptosis-related proteins and Ca2+ influx through ionotropic glutamate receptors.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Genisteína/farmacologia , Fármacos Neuroprotetores/farmacologia , Fragmentos de Peptídeos/metabolismo , Receptores Ionotrópicos de Glutamato/metabolismo , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Neurônios/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
10.
Nutr Neurosci ; 21(7): 478-486, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28421879

RESUMO

OBJECTIVE: To explore Zn2+ deficiency-induced neuronal injury in relation to DNA methylation, providing valuable data and basic information for clarifying the mechanism of Zn2+ deficiency-induced neuronal injury. METHODS: Cultured hippocampal neurons were exposed to the cell membrane-permeant Zn2+ chelator N,N,N',N'-Tetrakis (2-pyridylmethyl) ethylenediamine (TPEN) (2 µM), and to TPEN (2 µM) plus ZnSO4 (5 µM) for 24 hours. We analyzed intracellular Zn2+ levels, neuronal viability, and protein/mRNA levels for DNA (cytosine-5) methyltransferase 1 (DNMT1), DNA (cytosine-5-) methyltransferase 3 alpha (DNMT3a), methyl CpG binding protein 2 (MeCP2), Brain-derived neurotrophic factor (BDNF), and growth arrest and DNA-damage-inducible, beta (GADD45b) in the treated neurons. RESULTS: We found that exposure of hippocampal neurons to TPEN (2 µM) for 24 hours significantly reduced intracellular Zn2+ concentration and neuronal viability. Furthermore, DNMT3a, DNMT1, BDNF, and GADD45b protein levels in TPEN-treated neurons were significantly downregulated, whereas MeCP2 levels were, as expected, upregulated. In addition, DNMT3a and DNMT1 mRNA levels in TPEN-treated neurons were downregulated, while MeCP2, GADD45b, and BDNF mRNA were largely upregulated. Addition of ZnSO4 (5 µM) almost completely reversed the TPEN-induced alterations. CONCLUSION: Our data suggest that free Zn2+ deficiency-induced hippocampal neuronal injury correlates with free Zn2+ deficiency-induced changes in methylation-related protein gene expression including DNMT3a/DNMT1/MeCP2 and GADD45b, as well as BDNF gene expression.


Assuntos
Metilação de DNA , Hipocampo/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Zinco/deficiência , Animais , Antígenos de Diferenciação/genética , Antígenos de Diferenciação/metabolismo , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , DNA (Citosina-5-)-Metiltransferase 1/genética , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , DNA Metiltransferase 3A , Etilenodiaminas/toxicidade , Regulação da Expressão Gênica , Hipocampo/citologia , Proteína 2 de Ligação a Metil-CpG/genética , Proteína 2 de Ligação a Metil-CpG/metabolismo , Neurônios/patologia , Ratos , Ratos Wistar
11.
Cell Mol Neurobiol ; 37(2): 235-250, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26983717

RESUMO

Hypoxia-ischemia-induced neuronal death is an important pathophysiological process that accompanies ischemic stroke and represents a major challenge in preventing ischemic stroke. To elucidate factors related to and a potential preventative mechanism of hypoxia-ischemia-induced neuronal death, primary neurons were exposed to sodium dithionite and glucose deprivation (SDGD) to mimic hypoxic-ischemic conditions. The effects of N,N,N',N'-tetrakis (2-pyridylmethyl) ethylenediamine (TPEN), a specific Zn2+-chelating agent, on SDGD-induced neuronal death, glutamate signaling (including the free glutamate concentration and expression of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptor (GluR2) and N-methyl-D-aspartate (NMDA) receptor subunits (NR2B), and voltage-dependent K+ and Na+ channel currents were also investigated. Our results demonstrated that TPEN significantly suppressed increases in cell death, apoptosis, neuronal glutamate release into the culture medium, NR2B protein expression, and I K as well as decreased GluR2 protein expression and Na+ channel activity in primary cultured neurons exposed to SDGD. These results suggest that TPEN could inhibit SDGD-induced neuronal death by modulating apoptosis, glutamate signaling (via ligand-gated channels such as AMPA and NMDA receptors), and voltage-gated K+ and Na+ channels in neurons. Hence, Zn2+ chelation might be a promising approach for counteracting the neuronal loss caused by transient global ischemia. Moreover, TPEN could represent a potential cell-targeted therapy.


Assuntos
Apoptose/fisiologia , Quelantes/farmacologia , Etilenodiaminas/farmacologia , Neurônios/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/fisiologia , Canais de Sódio Disparados por Voltagem/fisiologia , Zinco/metabolismo , Animais , Animais Recém-Nascidos , Apoptose/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Morte Celular/fisiologia , Células Cultivadas , Ditionita/toxicidade , Glucose/deficiência , Ácido Glutâmico/metabolismo , Neurônios/efeitos dos fármacos , Ratos , Ratos Wistar
12.
Nutr Neurosci ; 20(9): 519-525, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27329329

RESUMO

OBJECTIVE: This study was carried out to understand the effects of zinc deficiency in rats aged 0∼2 months on learning and memory, and the brain-derived neurotrophic factor (BDNF) gene methylation status in the hippocampus. METHODS: The lactating mother rats were randomly divided into three groups (n = 12): zinc-adequate group (ZA: zinc 30 mg/kg diet), zinc-deprived group (ZD: zinc 1 mg/kg diet), and a pair-fed group (PF: zinc 30 mg/kg diet), in which the rats were pair-fed to those in the ZD group. After weaning (on day 23), offspring were fed the same diets as their mothers. After 37 days, the zinc concentrations in the plasma and hippocampus were measured, and the behavioral function of the offspring rats was measured using the passive avoidance performance test. We then assessed the DNA methylation patterns of the exon IX of BDNF by methylation-specific quantitative real-time PCR and the mRNA expression of BDNF in the hippocampus by RT-PCR. RESULTS: Compared with the ZA and PF groups, rats in the ZD group had shorter latency period, lower zinc concentrations in the plasma and hippocampus (P < 0.05). Interestingly, the DNA methylation of the BDNF exon IX was significantly increased in the ZD group, compared with the ZA and PF groups, whereas the expression of the BDNF mRNA was decreased. In addition, the DNMT1 mRNA expression was significantly upregulated and DNMT3A was downregulated in the ZD group, but not in the ZA and PF groups. CONCLUSION: The learning and memory damage in offspring may be a result of the epigenetic changes of the BDNF genes in response to the zinc-deficient diet during 0∼2 month period. Furthermore, this work supports the speculative notion that altered DNA methylation of BDNF in the hippocampus is one of the main causes of cognitive impairment by zinc deficiency.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Disfunção Cognitiva/etiologia , Metilação de DNA , Deficiências Nutricionais/fisiopatologia , Hipocampo/metabolismo , Neurônios/metabolismo , Zinco/deficiência , Animais , Aprendizagem da Esquiva , Comportamento Animal , Fator Neurotrófico Derivado do Encéfalo/genética , DNA (Citosina-5-)-Metiltransferase 1/genética , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , DNA Metiltransferase 3A , Deficiências Nutricionais/sangue , Deficiências Nutricionais/metabolismo , Epigênese Genética , Éxons , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Lactação , Masculino , Fenômenos Fisiológicos da Nutrição Materna , RNA Mensageiro/metabolismo , Distribuição Aleatória , Ratos , Zinco/sangue , Zinco/metabolismo
13.
Mol Neurobiol ; 60(8): 4232-4245, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37059931

RESUMO

The overproduction of neurotoxic amyloid-ß (Aß) peptides in the brain is a hallmark of Alzheimer's disease (AD). To determine the role of intracellular zinc ion (iZn2+) dysregulation in mediating Aß-related neurotoxicity, this study aimed to investigate whether N, N, N', N'­tetrakis (2­pyridylmethyl) ethylenediamine (TPEN), a Zn2+­specific chelator, could attenuate Aß25-35­induced neurotoxicity and the underlying mechanism. We used the 3-(4, 5-dimethyl-thiazol-2-yl)-2, 5-diphenyltetrazolium bromide assay to measure the viability of primary hippocampal neurons. We also determined intracellular Zn2+ and Ca2+ concentrations, mitochondrial and lysosomal functions, and intracellular reactive oxygen species (ROS) content in hippocampal neurons using live-cell confocal imaging. We detected L-type voltage-gated calcium channel currents (L-ICa) in hippocampal neurons using the whole­cell patch­clamp technique. Furthermore, we measured the mRNA expression levels of proteins related to the iZn2+ buffer system (ZnT-3, MT-3) and voltage-gated calcium channels (Cav1.2, Cav1.3) in hippocampal neurons using RT-PCR. The results showed that TPEN attenuated Aß25-35­induced neuronal death, relieved the Aß25-35­induced increase in intracellular Zn2+ and Ca2+ concentrations; reversed the Aß25-35­induced increase in ROS content, the Aß25-35­induced increase in the L-ICa peak amplitude at different membrane potentials, the Aß25-35­induced the dysfunction of the mitochondria and lysosomes, and the Aß25-35­induced decrease in ZnT-3 and MT-3 mRNA expressions; and increased the Cav1.2 mRNA expression in the hippocampal neurons. These results suggest that TPEN, the Zn2+-specific chelator, attenuated Aß25-35­induced neuronal damage, correlating with the recovery of intracellular Zn2+ and modulation of abnormal Ca2+-related signaling pathways.


Assuntos
Peptídeos beta-Amiloides , Neurônios , Espécies Reativas de Oxigênio/metabolismo , Peptídeos beta-Amiloides/toxicidade , Peptídeos beta-Amiloides/metabolismo , Neurônios/metabolismo , Zinco/farmacologia , Zinco/metabolismo , Quelantes , RNA Mensageiro/metabolismo , Fragmentos de Peptídeos/toxicidade , Fragmentos de Peptídeos/metabolismo , Apoptose
14.
Antioxidants (Basel) ; 12(1)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36670986

RESUMO

To determine the anti-heat stress and antioxidant effects of genistein and the underlying mechanisms, lipofuscin, reactive oxygen species (ROS), and survival under stress were first detected in Caenorhabditis elegans (C. elegans); then the localization and quantification of the fluorescent protein was determined by detecting the fluorescently labeled protein mutant strain; in addition, the aging-related mRNAs were detected by applying real-time fluorescent quantitative PCR in C. elegans. The results indicate that genistein substantially extended the lifespan of C. elegans under oxidative stress and heat conditions; and remarkably reduced the accumulation of lipofuscin in C. elegans under hydrogen peroxide (H2O2) and 35 °C stress conditions; in addition, it reduced the generation of ROS caused by H2O2 and upregulated the expression of daf-16, ctl-1, hsf-1, hsp-16.2, sip-1, sek-1, pmk-1, and eat-2, whereas it downregulated the expression of age-1 and daf-2 in C. elegans; similarly, it upregulated the expression of daf-16, sod-3, ctl-1, hsf-1, hsp-16.2, sip-1, sek-1, pmk-1, jnk-1 skn-1, and eat-2, whereas it downregulated the expression of age-1, daf-2, gst-4, and hsp-12.6 in C. elegans at 35 °C; moreover, it increased the accumulation of HSP-16.2 and SKN-1 proteins in nematodes under 35 °C and H2O2 conditions; however, it failed to prolong the survival time in the deleted mutant MQ130 nematodes under 35 °C and H2O2 conditions. These results suggest that genistein promote anti-heat stress and antioxidant effects in C. elegans via insulin/-insulin-like growth factor signaling (IIS), heat shock protein (HSP), mitogen-activated protein kinase (MAPK), dietary restriction (DR), and mitochondrial pathways.

15.
Vis Neurosci ; 29(6): 275-82, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23110755

RESUMO

Retinal ganglion cell line (RGC-5) has been widely used as a valuable model for studying pathophysiology and physiology of retinal ganglion cells in vitro. However, the electrophysiological characteristics, especially a thorough classification of ionic currents in the cell line, remain to be elucidated in details. In the present study, we determined the resting membrane potential (RMP) in RGC-5 cell line and then identified different types of ionic currents by using the whole-cell patch-clamp technique. The RMP recorded in the cell line was between -30 and -6 mV (-17.6 ± 2.6 mV, n = 10). We observed the following voltage-gated ion channel currents: (1) inwardly rectifying Cl- current (I Cl,ir), which could be blocked by Zn2+; (2) Ca2+-activated Cl- current (I Cl,Ca), which was sensitive to extracellular Ca2+ and could be inhibited by disodium 4,4'-diisothiocyanatostilbene-2,2'-disulfonate; (3) inwardly rectifying K+ currents (I K1), which could be blocked by Ba2+; (4) a small amount of delayed rectifier K+ current (I K). On the other hand, the voltage-gated sodium channels current (I Na) and transient outward potassium channels current (I A) were not observed in this cell line. These results further characterize the ionic currents in the RGC-5 cell line and are beneficial for future studies especially on ion channel (patho)physiology and pharmacology in the RGC-5 cell line.


Assuntos
Cloro/metabolismo , Canais Iônicos/classificação , Canais Iônicos/fisiologia , Transporte de Íons/fisiologia , Potenciais da Membrana/fisiologia , Potássio/metabolismo , Células Ganglionares da Retina/fisiologia , Animais , Cálcio/metabolismo , Linhagem Celular , Canais Iônicos/metabolismo , Técnicas de Patch-Clamp , Canais de Potássio/metabolismo , Ratos
16.
Cell Biochem Biophys ; 80(4): 755-761, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36068383

RESUMO

Zinc ion (Zn2+) is an important functional factor; however, excessive Zn2+ can be toxic. To understand the neurotoxicity of excessive Zn2+ and the underlying mechanism, PC12 cells were treated with excessive Zn2+ and Zn2+ plus N, N, N', N'-Tetrakisethylenediamine (TPEN), a zinc ion chelator agent. Trypan blue and 3-(4,5-dimethyl-2- thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide, thiazolyl blue tetrazolium bromide (MTT) assays were used to test cell viability; the relative kits were used to detect the activity of NOS synthase and the content of the receptor for advanced glycation end product (RAGE) in cells. We observed that excessive zinc caused PC12 cell damage and that TPEN partially reversed cell damage caused by excessive zinc. In addition, excessive zinc decreased total nitric oxide synthase (TNOS) activity in cells, in which constitutive nitric oxide synthase (cNOS) activity was significantly reduced; however, inducible nitric oxide synthase (iNOS) activity was extremely promoted. Moreover, excessive zinc upregulated the expression of RAGE, and TPEN effectively reversed the increase in RAGE induced by excessive zinc ions. Therefore, we concluded that excessive zinc caused PC12 cell damage, correlating with the inhibition of NOS and increase of RAGE induced in cells.


Assuntos
Azul Tripano , Zinco , Animais , Brometos/metabolismo , Morte Celular , Quelantes/farmacologia , Etilenodiaminas , Óxido Nítrico Sintase/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Células PC12 , Ratos , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Zinco/metabolismo
17.
J Biomed Mater Res A ; 109(11): 2294-2305, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33942484

RESUMO

We aimed to establish a 1-Deoxynojirimycin (DNJ) sustained-release delivery system to improve the hypoglycemic effect of DNJ. We used a transdermal diffusion meter in an in vitro orthogonal experiment to determine the optimal composition of the DNJ sustained-release transdermal system. Based on the in vitro analysis results, a sustained-release patch was prepared, and its pharmacokinetics and other properties were determined in vivo. The results showed that 30% hydroxypropyl methylcellulose (K100M ), 14% carboxymethyl cellulose sodium and 26% oleic acid-azone compound as the matrix material, drug excipient, and penetration enhancer, respectively, produced an optimal DNJ sustained-release delivery system. In vitro release tests showed that the system slowly released DNJ within 12 hr, conforming to the Higuchi equation. In vivo experiments showed that the prepared patch had good hypoglycemic activity and continuously released DNJ within 10 hr. In vivo pharmacokinetic study results showed that compared to conventional patches, the prepared patch exhibited significantly different maximum concentration (Cmax ), time to achieve Cmax (Tmax ), and area under the curve from 0 to time t (AUC[0-t] ) as well as improved pharmacokinetics. In conclusion, the prepared DNJ patch has high stability, a sustained-release effect, and relatively good pharmacokinetics and is a safe dosage form that does not cause skin irritation.


Assuntos
1-Desoxinojirimicina , Pele/metabolismo , Adesivo Transdérmico , 1-Desoxinojirimicina/química , 1-Desoxinojirimicina/farmacocinética , 1-Desoxinojirimicina/farmacologia , Animais , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacocinética , Preparações de Ação Retardada/farmacologia , Masculino , Camundongos , Coelhos
18.
Mol Brain ; 14(1): 124, 2021 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-34384467

RESUMO

To understand the role of intracellular zinc ion (Zn2+) dysregulation in mediating age-related neurodegenerative changes, particularly neurotoxicity resulting from the generation of excessive neurotoxic amyloid-ß (Aß) peptides, this study aimed to investigate whether N, N, N', N'-tetrakis (2-pyridylmethyl) ethylenediamine (TPEN), a Zn2+-specific chelator, could attenuate Aß25-35-induced neurotoxicity and the underlying electrophysiological mechanism. We used the 3-(4, 5-dimethyl-thiazol-2-yl)-2, 5-diphenyltetrazolium bromide assay to measure the viability of hippocampal neurons and performed single-cell confocal imaging to detect the concentration of Zn2+ in these neurons. Furthermore, we used the whole-cell patch-clamp technique to detect the evoked repetitive action potential (APs), the voltage-gated sodium and potassium (K+) channels of primary hippocampal neurons. The analysis showed that TPEN attenuated Aß25-35-induced neuronal death, reversed the Aß25-35-induced increase in intracellular Zn2+ concentration and the frequency of APs, inhibited the increase in the maximum current density of voltage-activated sodium channel currents induced by Aß25-35, relieved the Aß25-35-induced decrease in the peak amplitude of transient outward K+ currents (IA) and outward-delayed rectifier K+ currents (IDR) at different membrane potentials, and suppressed the steady-state activation and inactivation curves of IA shifted toward the hyperpolarization direction caused by Aß25-35. These results suggest that Aß25-35-induced neuronal damage correlated with Zn2+ dysregulation mediated the electrophysiological changes in the voltage-gated sodium and K+ channels. Moreover, Zn2+-specific chelator-TPEN attenuated Aß25-35-induced neuronal damage by recovering the intracellular Zn2+ concentration.


Assuntos
Peptídeos beta-Amiloides/toxicidade , Etilenodiaminas/farmacologia , Proteínas do Tecido Nervoso/fisiologia , Neurônios/efeitos dos fármacos , Fragmentos de Peptídeos/toxicidade , Canais de Potássio de Abertura Dependente da Tensão da Membrana/fisiologia , Canais de Sódio Disparados por Voltagem/fisiologia , Zinco/fisiologia , Potenciais de Ação/efeitos dos fármacos , Animais , Células Cultivadas , Feminino , Hipocampo/citologia , Ativação do Canal Iônico/efeitos dos fármacos , Masculino , Neurônios/fisiologia , Técnicas de Patch-Clamp , Ratos , Análise de Célula Única
19.
ChemSusChem ; 14(20): 4454-4465, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34323383

RESUMO

A two-dimensional electron-rich fused-ring moiety (ClBDSe) based on benzo[1,2-b:4,5-b']diselenophene is synthesized. Three copolymers (PBDT-Se, PBDSe-T, and PBDSe-Se) are obtained by manipulating the connection types and number of selenophene units on the conjugated main chains with two 2D fused-ring units and two different π-bridges, respectively. In comparison with PBDT-Se and PBDSe-Se, PBDSe-T with benzo[1,2-b:4,5-b']diselenophene unit and thiophene π-bridge exhibits the deepest HOMO energy level and the strongest crystallinity in neat films. The PBDSe-T:Y6 blend film exhibits the best absorption complementarity, the most distinctive face-on orientation with proper phase separation, the highest carrier mobilities, and the lowest charge recombination among three blend films. Finally, the PBDSe-T:Y6-based device delivers an impressive power conversion efficiency (PCE) of 14.50 %, which is higher than those of PBDT-Se:Y6 and PBDSe-Se:Y6. Moreover, a decent open-circuit voltage (Voc ) of 0.89 V with a remarkably small energy loss of 0.44 eV is achieved for PBDSe-T:Y6. The efficiency of 14.50 % is the highest value for selenophene-containing copolymer-based binary organic solar cells (OSCs). This study provides evidence that introduction of 2D-benzo[1,2-b:4,5-b']diselenophene as a fused electron-rich unit with π-bridging into copolymeric donors is a valid strategy for providing high Voc and excellent PCE simultaneously in selenophene-based OSCs.

20.
Phytother Res ; 24(10): 1451-6, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20878693

RESUMO

Memory performance, brain excitatory amino acid and acetylcholinesterase activity of chronically aluminum (Al) exposed mice in response to soy isoflavones (SI) treatment was investigated in the study. Forty eight mice were allotted randomly into a control group, an Al exposed group (100 mg/kg Al) and an Al exposed group treated with SI (100 mg/kg Al + 60 mg/kg SI) for 60 days. Chronic Al exposure significantly impaired long memory performance in mice as assessed using a passive avoidance task test (χ(2) analysis, p < 0.05). Interestingly, SI treatment markedly improved the memory performance score in the Al exposed mice. This improvement was associated with a total reversal of Al-induced increases in acetylcholinesterase activity in the cerebral cortex and hippocampus of mice. The Al exposure also led to significant decreases in brain levels of aspartic and glutamic acids, two excitatory amino acid neurotransmitters; whereas SI treatment partially reversed the decreased aspartic and glutamic acid contents in the hippocampus. The results suggest that SI can improve long memory performance in the Al exposed mice, possibly by modulating the metabolism of brain acetylcholine and amino acid neurotransmitters.


Assuntos
Acetilcolinesterase/análise , Alumínio/efeitos adversos , Encéfalo/metabolismo , Aminoácidos Excitatórios/análise , Isoflavonas/farmacologia , Memória/efeitos dos fármacos , Animais , Aprendizagem da Esquiva/efeitos dos fármacos , Masculino , Camundongos , Glycine max/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA