Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Microbiol Spectr ; 10(5): e0203322, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36200903

RESUMO

Necrotizing fasciitis is a severe infectious disease that results in significant mortality. Streptococcus pyogenes (group A Streptococcus, GAS) is one of the most common bacterial pathogens of monomicrobial necrotizing fasciitis. The early diagnosis of necrotizing fasciitis is crucial; however, the typical cutaneous manifestations are not always presented in patients with GAS necrotizing fasciitis, which would lead to miss- or delayed diagnosis. GAS with spontaneous inactivating mutations in the CovR/CovS two-component regulatory system is significantly associated with destructive diseases such as necrotizing fasciitis and toxic shock syndrome; however, no specific marker has been used to identify these invasive clinical isolates. This study evaluated the sensitivity and specificity of using CovR/CovS-controlled phenotypes to identify CovR/CovS-inactivated isolates. Results showed that the increase of hyaluronic acid capsule production and streptolysin O expression were not consistently presented in CovS-inactivated clinical isolates. The repression of SpeB is the phenotype with 100% sensitivity of identifying in CovS-inactivated isolates among 61 clinical isolates. Nonetheless, this phenotype failed to distinguish RopB-inactivated isolates from CovS-inactivated isolates and cannot be utilized to identify CovR-inactivated mutant and RocA (Regulator of Cov)-inactivated isolates. In this study, we identified and verified that PepO, the endopeptidase which regulates SpeB expression through degrading SpeB-inducing quorum-sensing peptide, was a bacterial marker to identify isolates with defects in the CovR/CovS pathway. These results also inform the potential strategy of developing rapid detection methods to identify invasive GAS variants during infection. IMPORTANCE Necrotizing fasciitis is rapidly progressive and life-threatening; if the initial diagnosis is delayed, deep soft tissue infection can progress to massive tissue destruction and toxic shock syndrome. Group A Streptococcus (GAS) with inactivated mutations in the CovR/CovS two-component regulatory system are related to necrotizing fasciitis and toxic shock syndrome; however, no bacterial marker is available to identify these invasive clinical isolates. Inactivation of CovR/CovS resulted in the increased expression of endopeptidase PepO. Our study showed that the upregulation of PepO mediates a decrease in SpeB-inducing peptide (SIP) in the covR mutant, indicating that CovR/CovS modulates SIP-dependent quorum-sensing activity through PepO. Importantly, the sensitivity and specificity of utilizing PepO to identify clinical isolates with defects in the CovR/CovS pathway, including its upstream RocA regulator, were 100%. Our results suggest that identification of invasive GAS by PepO may be a strategy for preventing severe manifestation or poor prognosis after GAS infection.


Assuntos
Fasciite Necrosante , Choque Séptico , Infecções Estreptocócicas , Humanos , Streptococcus pyogenes/genética , Regulação Bacteriana da Expressão Gênica , Histidina Quinase/genética , Histidina Quinase/metabolismo , Fasciite Necrosante/diagnóstico , Ácido Hialurônico/metabolismo , Proteínas Repressoras/metabolismo , Infecções Estreptocócicas/diagnóstico , Infecções Estreptocócicas/microbiologia , Proteínas de Bactérias/metabolismo , Endopeptidases/genética , Endopeptidases/metabolismo
2.
Front Microbiol ; 12: 685343, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34149675

RESUMO

The acquisition of the phage-encoded superantigen ssa by scarlet fever-associated group A Streptococcus (Streptococcus pyogenes, GAS) is found in North Asia. Nonetheless, the impact of acquiring ssa by GAS in invasive infections is unclear. This study initially analyzed the prevalence of ssa+ GAS among isolates from sterile tissues and blood. Among 220 isolates in northern Taiwan, the prevalence of ssa+ isolates increased from 1.5% in 2008-2010 to 40% in 2017-2019. Spontaneous mutations in covR/covS, which result in the functional loss of capacity to phosphorylate CovR, are frequently recovered from GAS invasive infection cases. Consistent with this, Phostag western blot results indicated that among the invasive infection isolates studied, 10% of the ssa+ isolates lacked detectable phosphorylated CovR. Transcription of ssa is upregulated in the covS mutant. Furthermore, in emm1 and emm12 covS mutants, ssa deletion significantly reduced their capacity to grow in human whole blood. Finally, this study showed that the ssa gene could be transferred from emm12-type isolates to the emm1-type wild-type strain and covS mutants through phage infection and lysogenic conversion. As the prevalence of ssa+ isolates increased significantly, the role of streptococcal superantigen in GAS pathogenesis, particularly in invasive covR/covS mutants, should be further analyzed.

3.
J Hazard Mater ; 142(3): 662-8, 2007 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-17034941

RESUMO

The development of versatile systems capable of providing rapid, portable, and inexpensive detection of explosives and energetic compounds are critically needed to offer enhanced levels of protection against current and future threats to homeland security, as well as satisfying a wide range of applications in the fields of forensic analysis, emergency response, and industrial hazards analysis. Calorimetric techniques have been largely overlooked in efforts to develop advanced chemical analysis technology, largely because of limitations associated with the physical size of the instruments and the relatively long timescales (>30 min) required to obtain a result. This miniaturized calorimeter circumvents these limitations, thereby creating a first-of-its-kind system allowing thermal analysis to be performed in a portable format that can be configured for use in a variety of field operations with a significantly reduced response time (approximately 2 min). Unlike current explosives detectors, this system is based on calorimetric techniques that are inherently capable of providing direct measurements of energy release potential and therefore do not depend on prior knowledge of familiar compounds.


Assuntos
Calorimetria/métodos , Poluentes Ambientais/análise , Substâncias Explosivas/análise , Substâncias Perigosas/análise , Nanotecnologia/métodos , Calorimetria/instrumentação , Substâncias Explosivas/química , Indústrias , Nanotecnologia/instrumentação
4.
J Phys Chem B ; 114(16): 5497-502, 2010 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-20361776

RESUMO

Glycerol binding and the radical-initiated hydrogen transfer by the coenzyme B(12)-independent glycerol dehydratase from Clostridium butyricum were investigated by using quantum mechanical/molecular mechanical (QM/MM) calculations based on the high-resolution crystal structure (PDB code: 1r9d). Our QM/MM calculations of enzyme catalysis considered the electrostatic coupling between the quantum-mechanical and molecular-mechanical subsystems and two alternative mechanisms. In addition to performing QM/MM calculations in the enzyme, we evaluated energetics along the same reaction pathway in aqueous solution modeled by the polarized dielectric and in the virtual enzyme site that included full steric component from the enzyme residues described by molecular mechanics but lacked the electrostatic contribution of these residues. In this way, we established significant enzyme catalytic effect with respect to reference reactions in both an aqueous solution and a nonpolar cavity. Structurally, four hydrogen bonds formed between glycerol and H164, S282, E435, and D447 anchor glycerol for hydrogen abstraction by thiyl radical on C433. These hydrogen-bond partners orient glycerol molecule to facilitate the formation of the transition state for hydrogen abstraction from carbon C1. This reaction then proceeds with the activation free energy of 6.3 kcal/mol and the reaction free energy of 6.1 kcal/mol. The polarization effects imposed by these hydrogen bonds represent a predominant contribution to a 7.5 kcal/mol enzyme catalytic effect. These results demonstrate the importance of electrostatic catalysis and hydrogen-bonding in enzyme-catalyzed radical reactions and advance our understanding of the catalytic mechanism of B(12)-independent glycerol dehydratases.


Assuntos
Coenzimas/metabolismo , Glicerol/metabolismo , Hidroliases/química , Hidroliases/metabolismo , Hidrogênio/metabolismo , Teoria Quântica , Vitamina B 12/metabolismo , Biocatálise , Domínio Catalítico , Clostridium butyricum/enzimologia , Modelos Moleculares , Propilenoglicóis/metabolismo , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA