Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
1.
Nature ; 582(7813): 557-560, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32340022

RESUMO

The ongoing outbreak of coronavirus disease 2019 (COVID-19) has spread rapidly on a global scale. Although it is clear that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is transmitted through human respiratory droplets and direct contact, the potential for aerosol transmission is poorly understood1-3. Here we investigated the aerodynamic nature of SARS-CoV-2 by measuring viral RNA in aerosols in different areas of two Wuhan hospitals during the outbreak of COVID-19 in February and March 2020. The concentration of SARS-CoV-2 RNA in aerosols that was detected in isolation wards and ventilated patient rooms was very low, but it was higher in the toilet areas used by the patients. Levels of airborne SARS-CoV-2 RNA in the most public areas was undetectable, except in two areas that were prone to crowding; this increase was possibly due to individuals infected with SARS-CoV-2 in the crowd. We found that some medical staff areas initially had high concentrations of viral RNA with aerosol size distributions that showed peaks in the submicrometre and/or supermicrometre regions; however, these levels were reduced to undetectable levels after implementation of rigorous sanitization procedures. Although we have not established the infectivity of the virus detected in these hospital areas, we propose that SARS-CoV-2 may have the potential to be transmitted through aerosols. Our results indicate that room ventilation, open space, sanitization of protective apparel, and proper use and disinfection of toilet areas can effectively limit the concentration of SARS-CoV-2 RNA in aerosols. Future work should explore the infectivity of aerosolized virus.


Assuntos
Aerossóis/análise , Aerossóis/química , Aparelho Sanitário , Betacoronavirus/isolamento & purificação , Infecções por Coronavirus/virologia , Hospitais , Pneumonia Viral/virologia , Local de Trabalho , Betacoronavirus/genética , COVID-19 , China/epidemiologia , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/transmissão , Aglomeração , Desinfecção , Humanos , Unidades de Terapia Intensiva , Máscaras , Corpo Clínico , Pandemias/prevenção & controle , Pacientes/estatística & dados numéricos , Pneumonia Viral/epidemiologia , Pneumonia Viral/prevenção & controle , Pneumonia Viral/transmissão , RNA Viral/análise , SARS-CoV-2 , Isolamento Social , Ventilação
2.
Appl Environ Microbiol ; 88(9): e0249721, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35435717

RESUMO

Nonheme iron- and α-ketoglutarate (αKG)-dependent halogenases (NHFeHals), which catalyze the regio- and stereoselective halogenation of the unactivated C(sp3)-H bonds, exhibit tremendous potential in the challenging asymmetric halogenation. AdeV from Actinomadura sp. ATCC 39365 is the first identified carrier protein-free NHFeHal that catalyzes the chlorination of nucleotide 2'-deoxyadenosine-5'-monophosphate (2'-dAMP) to afford 2'-chloro-2'-deoxyadenosine-5'-monophosphate. Here, we determined the complex crystal structures of AdeV/FeII/Cl and AdeV/FeII/Cl/αKG at resolutions of 1.76 and 1.74 Å, respectively. AdeV possesses a typical ß-sandwich topology with H194, H252, αKG, chloride, and one water molecule coordinating FeII in the active site. Molecular docking, mutagenesis, and biochemical analyses reveal that the hydrophobic interactions and hydrogen bond network between the substrate-binding pocket and the adenine, deoxyribose, and phosphate moieties of 2'-dAMP are essential for substrate recognition. Residues H111, R177, and H192 might play important roles in the second-sphere interactions that control reaction partitioning. This study provides valuable insights into the catalytic selectivity of AdeV and will facilitate the rational engineering of AdeV and other NHFeHals for synthesis of halogenated nucleotides. IMPORTANCE Halogenated nucleotides are a group of important antibiotics and are clinically used as antiviral and anticancer drugs. AdeV is the first carrier protein-independent nonheme iron- and α-ketoglutarate (αKG)-dependent halogenase (NHFeHal) that can selectively halogenate nucleotides and exhibits restricted substrate specificity toward several 2'-dAMP analogues. Here, we determined the complex crystal structures of AdeV/FeII/Cl and AdeV/FeII/Cl/αKG. Molecular docking, mutagenesis, and biochemical analyses provide important insights into the catalytic selectivity of AdeV. This study will facilitate the rational engineering of AdeV and other carrier protein-independent NHFeHals for synthesis of halogenated nucleotides.


Assuntos
Halogenação , Ácidos Cetoglutáricos , Proteínas de Transporte , Compostos Ferrosos , Halogênios , Ferro/química , Simulação de Acoplamento Molecular , Nucleotídeos
3.
J Virol ; 94(11)2020 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-32188736

RESUMO

Hepatitis B virus (HBV) chronically infects approximately 350 million people worldwide, and 600,000 deaths are caused by HBV-related hepatic failure, liver cirrhosis, and hepatocellular carcinoma annually. It is important to reveal the mechanism underlying the regulation of HBV replication. This study demonstrated that osteopetrosis-associated transmembrane protein 1 (Ostm1) plays an inhibitory role in HBV replication. Ostm1 represses the levels of HBeAg and HBsAg proteins, HBV 3.5-kb and 2.4/2.1-kb RNAs, and core-associated DNA in HepG2, Huh7, and NTCP-HepG2 cells. Notably, Ostm1 has no direct effect on the activity of HBV promoters or the transcription of HBV RNAs; instead, Ostm1 binds to HBV RNA to facilitate RNA decay. Detailed studies further demonstrated that Ostm1 binds to and recruits the RNA exosome complex to promote the degradation of HBV RNAs, and knockdown of the RNA exosome component exonuclease 3 (Exosc3) leads to the elimination of Ostm1-mediated repression of HBV replication. Mutant analyses revealed that the N-terminal domain, the transmembrane domain, and the C-terminal domain are responsible for the repression of HBV replication, and the C-terminal domain is required for interaction with the RNA exosome complex. Moreover, Ostm1 production is not regulated by interferon-α (IFN-α) or IFN-γ, and the expression of IFN signaling components is not affected by Ostm1, suggesting that Ostm1 anti-HBV activity is independent of the IFN signaling pathway. In conclusion, this study revealed a distinct mechanism underlying the repression of HBV replication, in which Ostm1 binds to HBV RNA and recruits RNA exosomes to degrade viral RNA, thereby restricting HBV replication.IMPORTANCE Hepatitis B virus (HBV) is a human pathogen infecting the liver to cause a variety of diseases ranging from acute hepatitis to advanced liver diseases, fulminate hepatitis, liver cirrhosis, and hepatocellular carcinoma, thereby causing a major health problem worldwide. In this study, we demonstrated that Ostm1 plays an inhibitory role in HBV protein production, RNA expression, and DNA replication. However, Ostm1 has no effect on the activities of the four HBV promoters; instead, it binds to HBV RNA and recruits RNA exosomes to promote HBV RNA degradation. We further demonstrated that the anti-HBV activity of Ostm1 is independent of the interferon signaling pathway. In conclusion, this study reveals a distinct mechanism underlying the repression of HBV replication and suggests that Ostm1 is a potential therapeutic agent for HBV infection.


Assuntos
Exossomos/metabolismo , Vírus da Hepatite B/fisiologia , Proteínas de Membrana/metabolismo , RNA Viral/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Replicação Viral , Complexo Multienzimático de Ribonucleases do Exossomo/genética , Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo , Exossomos/genética , Exossomos/virologia , Técnicas de Silenciamento de Genes , Células HEK293 , Células HeLa , Células Hep G2 , Antígenos de Superfície da Hepatite B/genética , Antígenos de Superfície da Hepatite B/metabolismo , Antígenos E da Hepatite B/genética , Antígenos E da Hepatite B/metabolismo , Humanos , Interferon-alfa/genética , Interferon-alfa/metabolismo , Interferon gama/genética , Interferon gama/metabolismo , Proteínas de Membrana/genética , Domínios Proteicos , RNA Viral/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Ubiquitina-Proteína Ligases/genética
4.
PLoS Pathog ; 15(11): e1008142, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31730654

RESUMO

As a neurotropic virus, human Enterovirus 71 (EV71) infection causes hand-foot-and-mouth disease (HFMD) and may develop severe neurological disorders in infants. Toll-like receptor 7 (TLR7) acts as an innate immune receptor and is also a death receptor in the central nervous system (CNS). However, the mechanisms underlying the regulation of TLR7-mediated brain pathogenesis upon EV71 infection remain largely elusive. Here we reveal a novel mechanism by which EV71 infects astrocytes in the brain and induces neural pathogenesis via TLR7 and interleukin-6 (IL-6) in C57BL/6 mice and in human astroglioma U251 cells. Upon EV71 infection, wild-type (WT) mice displayed more significant body weight loss, higher clinical scores, and lower survival rates as compared with TLR7-/- mice. In the cerebral cortex of EV71-infected mice, neurofilament integrity was disrupted, and inflammatory cell infiltration and neurodegeneration were induced in WT mice, whereas these were largely absent in TLR7-/- mice. Similarly, IL-6 production, Caspase-3 cleavage, and cell apoptosis were significantly higher in EV71-infected WT mice as compared with TLR7-/- mice. Moreover, EV71 preferentially infected and induced IL-6 in astrocytes of mice brain. In U251 cells, EV71-induced IL-6 production and cell apoptosis were suppressed by shRNA-mediated knockdown of TLR7 (shTLR7). Moreover, in the cerebral cortex of EV71-infected mice, the blockade of IL-6 with anti-IL-6 antibody (IL-6-Ab) restored the body weight loss, attenuated clinical scores, improved survival rates, reduced the disruption of neurofilament integrity, decreased cell apoptotic induction, and lowered levels of Caspase-3 cleavage. Similarly, in EV71-infected U251 cells, IL-6-Ab blocked EV71-induced IL-6 production and cell apoptosis in response to viral infection. Collectively, it's exhibited TLR7 upregulation, IL-6 induction and astrocytic cell apoptosis in EV71-infected human brain. Taken together, we propose that EV71 infects astrocytes of the cerebral cortex in mice and human and triggers TLR7 signaling and IL-6 release, subsequently inducing neural pathogenesis in the brain.


Assuntos
Apoptose , Enterovirus Humano A/isolamento & purificação , Infecções por Enterovirus/complicações , Interleucina-6/metabolismo , Doenças Neurodegenerativas/epidemiologia , Receptor 7 Toll-Like/metabolismo , Animais , Astrócitos/metabolismo , Astrócitos/patologia , Astrócitos/virologia , Encéfalo/metabolismo , Encéfalo/patologia , Encéfalo/virologia , Pré-Escolar , Infecções por Enterovirus/virologia , Feminino , Humanos , Lactente , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/virologia , Receptor 7 Toll-Like/genética
5.
FASEB J ; 34(1): 1497-1515, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31914638

RESUMO

The NLRP3 inflammasome regulates innate immune and inflammatory responses by promoting caspase1-dependent induction of pro-inflammatory cytokines. However, aberrant inflammasome activation causes diverse diseases, and thus inflammasome activity must be tightly controlled. Here, we reveal a molecular mechanism underlying the regulation of NLRP3 inflammasome. NLRP3 interacts with SUMO-conjugating enzyme (UBC9), which subsequently promotes small ubiquitin-like modifier 1 (SUMO1) to catalyze NLRP3 SUMOylation at residue Lys204. SUMO1-catalyzed SUMOylation of NLRP3 facilitates ASC oligomerization, inflammasome activation, and interleukin-1ß secretion. Moreover, this study also reveals that SUMO-specific protease 3 (SENP3) is required for the deSUMOylation of NLRP3. Interestingly, SENP3 deSUMOylates NLRP3 to attenuate ASC recruitment and speck formation, the NLRP3 inflammasome activation, as well as IL-1ß cleavage and secretion. In conclusion, we reveal that SUMO1-catalyzed SUMOylation and SENP3-mediated deSUMOylation of NLRP3 orchestrate the inflammasome activation.


Assuntos
Cisteína Endopeptidases/metabolismo , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína SUMO-1/metabolismo , Sumoilação , Cisteína Endopeptidases/genética , Células HEK293 , Células HeLa , Humanos , Inflamassomos/genética , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína SUMO-1/genética , Enzimas de Conjugação de Ubiquitina/genética , Enzimas de Conjugação de Ubiquitina/metabolismo
6.
BMC Biol ; 18(1): 182, 2020 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-33243234

RESUMO

BACKGROUND: Extracellular adenosine triphosphate (ATP), a key danger-associated molecular pattern (DAMP) molecule, is released to the extracellular medium during inflammation by injured parenchymal cells, dying leukocytes, and activated platelets. ATP directly activates the plasma membrane channel P2X7 receptor (P2X7R), leading to an intracellular influx of K+, a key trigger inducing NLRP3 inflammasome activation. However, the mechanism underlying P2X7R-mediated activation of NLRP3 inflammasome is poorly understood, and additional molecular mediators have not been identified. Here, we demonstrate that Paxillin is the molecule connecting the P2X7 receptor and NLRP3 inflammasome through protein interactions. RESULTS: We show a distinct mechanism by which Paxillin promotes ATP-induced activation of the P2X7 receptor and NLRP3 inflammasome. Extracellular ATP induces Paxillin phosphorylation and then facilitates Paxillin-NLRP3 interaction. Interestingly, Paxillin enhances NLRP3 deubiquitination and activates NLRP3 inflammasome upon ATP treatment and K+ efflux. Moreover, we demonstrated that USP13 is a key enzyme for Paxillin-mediated NLRP3 deubiquitination upon ATP treatment. Notably, extracellular ATP promotes Paxillin and NLRP3 migration from the cytosol to the plasma membrane and facilitates P2X7R-Paxillin interaction and PaxillinNLRP3 association, resulting in the formation of the P2X7R-Paxillin-NLRP3 complex. Functionally, Paxillin is essential for ATP-induced NLRP3 inflammasome activation in mouse BMDMs and BMDCs as well as in human PBMCs and THP-1-differentiated macrophages. CONCLUSIONS: We have identified paxillin as a mediator of NLRP3 inflammasome activation. Paxillin plays key roles in ATP-induced activation of the P2X7 receptor and NLRP3 inflammasome by facilitating the formation of the P2X7R-Paxillin-NLRP3 complex.


Assuntos
Trifosfato de Adenosina/metabolismo , Inflamassomos/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Paxilina/genética , Receptores Purinérgicos P2X7/genética , Animais , Células HEK293 , Células HeLa , Humanos , Inflamassomos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Paxilina/metabolismo , Receptores Purinérgicos P2X7/metabolismo
7.
Emerg Infect Dis ; 26(11): 2755-2758, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32667282

RESUMO

During January-February 2020, coronavirus disease (COVID-19) and tuberculosis were diagnosed for 3 patients in Wuhan, China. All 3 patients had COVID-19 pneumonia. One severely ill patient died after acute respiratory distress syndrome developed. Clinicians and public health officials should be aware of underlying chronic infections such as tuberculosis in COVID-19 patients.


Assuntos
Betacoronavirus , Coinfecção/microbiologia , Infecções por Coronavirus/microbiologia , Mycobacterium , Pneumonia Viral/microbiologia , Tuberculose Pulmonar/microbiologia , Adulto , COVID-19 , China , Evolução Fatal , Humanos , Masculino , Pessoa de Meia-Idade , Pandemias , SARS-CoV-2
8.
J Virol ; 93(21)2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31413130

RESUMO

Dengue virus (DENV) infection causes serious clinical symptoms, including dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). Vascular permeability change is the main feature of the diseases, and the abnormal expression of proinflammatory cytokines is the important cause of vascular permeability change. However, the mechanism underlying vascular permeability induced by DENV has not been fully elucidated. Here, we reveal a distinct mechanism by which DENV infection promotes NLRP3 inflammasome activation and interleukin-1 beta (IL-1ß) release to induce endothelial permeability and vascular leakage in mice. DENV M protein interacts with NLRP3 to facilitate NLRP3 inflammasome assembly and activation, which induce proinflammatory cytokine IL-1ß activation and release. Notably, M can induce vascular leakage in mouse tissues by activating the NLRP3 inflammasome and IL-1ß. More importantly, inflammatory cell infiltration and tissue injuries are induced by M in wild-type (WT) mouse tissues, but they are not affected by M in NLRP3 knockout (NLRP3-/-) mouse tissues. Evans blue intensities in WT mouse tissues are significantly higher than in NLRP3-/- mouse tissues, demonstrating an essential role of NLRP3 in M-induced vascular leakages in mice. Therefore, we propose that upon DENV infection, M interacts with NLRP3 to facilitate inflammasome activation and IL-1ß secretion, which lead to the induction of endothelial permeability and vascular leakage in mouse tissues. The important role of the DENV-M-NLRP3-IL-1ß axis in the induction of vascular leakage provides new insights into the mechanisms underlying DENV pathogenesis and DENV-associated DHF and DSS development.IMPORTANCE Dengue virus (DENV) is a mosquito-borne pathogen, and infections by this virus are prevalent in over 100 tropical and subtropical countries or regions, with approximately 2.5 billion people at risk. DENV infection induces a spectrum of clinical symptoms, ranging from classical dengue fever (DF) to severe dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). Therefore, it is important to understand the mechanisms underlying DENV pathogenesis. In this study, we reveal that the DENV membrane protein (M) interacts with the host NLRP3 protein to promote NLRP3 inflammasome activation, which leads to the activation and release of a proinflammatory cytokine, interleukin-1 beta (IL-1ß). More importantly, we demonstrate that M protein can induce vascular permeability and vascular leakage and that NLRP3 is required for M-induced vascular leakage in mouse tissues. Collectively, this study reveals a distinct mechanism underlying DENV pathogeneses and provides new insights into the development of therapeutic agents for DENV-associated diseases.


Assuntos
Vírus da Dengue/imunologia , Dengue/imunologia , Endotélio Vascular/imunologia , Inflamassomos/imunologia , Interleucina-1beta/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/fisiologia , Proteínas da Matriz Viral/metabolismo , Animais , Permeabilidade Capilar , Células Cultivadas , Dengue/patologia , Dengue/virologia , Endotélio Vascular/metabolismo , Endotélio Vascular/patologia , Feminino , Humanos , Inflamassomos/metabolismo , Interleucina-1beta/genética , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptor de Interferon alfa e beta/fisiologia , Proteínas da Matriz Viral/genética
9.
J Virol ; 93(7)2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30674631

RESUMO

Hepatitis B virus (HBV) infection is the leading cause of chronic hepatitis B (CHB), liver cirrhosis (LC), and hepatocellular carcinoma (HCC). This study reveals a distinct mechanism underlying the regulation of HBV replication. HBV activates homeobox A10 (HoxA10) in human hepatocytes, leukocytes, peripheral blood mononuclear cells (PBMCs), HepG2-NTCP cells, leukocytes isolated from CHB patients, and HBV-associated HCC tissues. HoxA10 in turn represses HBV replication in human hepatocytes, HepG2-NTCP cells, and BALB/c mice. Interestingly, we show that during early HBV infection, p38 mitogen-activated protein kinase (MAPK) and signal transducer and activator of transcription 3 (STAT3) were activated to facilitate HBV replication; however, during late HBV infection, HoxA10 was induced to attenuate HBV replication. Detailed studies reveal that HoxA10 binds to p38 MAPK, recruits SH2-containing protein tyrosine phosphatase 1 (SHP-1) to facilitate SHP-1 in catalyzing dephosphorylation of p38 MAPK/STAT3, and thereby attenuates p38 MAPK/STAT3 activation and HBV replication. Furthermore, HoxA10 binds to the HBV enhancer element I (EnhI)/X promoter, competes with STAT3 for binding of the promoter, and thereby represses HBV transcription. Taken together, these results show that HoxA10 attenuates HBV replication through repressing the p38 MAPK/STAT3 pathway by two approaches: HoxA10 interacts with p38 MAPK and recruits SHP-1 to repress HBV replication, and HoxA10 binds to the EnhI/X promoter and competes with STAT3 to attenuate HBV transcription. Thus, the function of HoxA10 is similar to the action of interferon (IFN) in terms of inhibition of HBV infection; however, the mechanism of HoxA10-mediated repression of HBV replication is different from the mechanism underlying IFN-induced inhibition of HBV infection.IMPORTANCE Two billion people have been infected with HBV worldwide; about 240 million infected patients developed chronic hepatitis B (CHB), and 650,000 die each year from liver cirrhosis (LC) or hepatocellular carcinoma (HCC). This work elucidates a mechanism underlying the control of HBV replication. HBV infection activates HoxA10, a regulator of cell differentiation and cancer progression, in human cells and patients with CHB and HCC. HoxA10 subsequently inhibits HBV replication in human tissue culture cells and mice. Additionally, HoxA10 interacts with p38 MAPK to repress the activation of p38 MAPK and STAT3 and recruits and facilitates SHP-1 to catalyze the dephosphorylation of p38 MAPK and STAT3. Moreover, HoxA10 competes with STAT3 for binding of the HBV X promoter to repress HBV transcription. Thus, this work reveals a negative regulatory mechanism underlying the control of HBV replication and provides new insights into the development of potential agents to control HBV infection.


Assuntos
Vírus da Hepatite B/genética , Hepatite B Crônica/metabolismo , Proteínas de Homeodomínio/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 6/metabolismo , Fator de Transcrição STAT3/metabolismo , Replicação Viral/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Estudos de Casos e Controles , Linhagem Celular , Linhagem Celular Tumoral , Elementos Facilitadores Genéticos/genética , Células Hep G2 , Hepatite B Crônica/virologia , Hepatócitos/metabolismo , Hepatócitos/virologia , Proteínas Homeobox A10 , Humanos , Interferons/metabolismo , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/virologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Regiões Promotoras Genéticas/genética , Transcrição Gênica/genética
10.
11.
PLoS Pathog ; 14(3): e1006921, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29529093

RESUMO

[This corrects the article DOI: 10.1371/journal.ppat.1006123.].

12.
FASEB J ; 33(4): 5793-5807, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30653357

RESUMO

Activation of the NACHT, leucine-rich repeat, and pyrin domains-containing protein 3 (collectively known as NLRP3) inflammasome plays a key role in host immune response, which is the first line of defense against cellular stresses and pathogen infections. However, excessive inflammasome activation damages host cells, and therefore it must be precisely controlled. Here, we discover that Cullin1 (CUL1), a key component of the Skp1-Cullin1-F-box E3 ligase, plays a critical role in controlling the NLRP3 inflammasome. CUL1 represses inflammasome assembly in cultured cells, suppresses NLRP3 function in human monocytic cell line macrophages, and attenuates inflammatory responses in mouse model. Detailed studies demonstrate that CUL1 interacts with NLRP3 and promotes NLRP3 ubiquitination, but not protein degradation, to repress the NLRP3 inflammasome activation. Moreover, upon inflammatory stimuli, including ATP and nigericin treatments, CUL1 disassociates from NLRP3 to release the repression of the NLRP3 inflammasome. Thus, this study reveals a distinct and unique mechanism underlying the control of systematic activation of the NLRP3 inflammasome.-Wan, P., Zhang, Q., Liu, W., Jia, Y., Ai, S., Wang, T., Wang, W., Pan, P., Yang, G., Xiang, Q., Huang, S., Yang, Q., Zhang, W., Liu, F., Tan, Q., Zhang, W., Wu, K., Liu, Y., Wu, J. Cullin1 binds and promotes NLRP3 ubiquitination to repress systematic inflammasome activation.


Assuntos
Proteínas Culina/metabolismo , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Ubiquitinação/fisiologia , Trifosfato de Adenosina/metabolismo , Animais , Linhagem Celular , Feminino , Células HEK293 , Humanos , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/metabolismo , Nigericina/metabolismo , Proteólise , Células THP-1 , Ubiquitina-Proteína Ligases/metabolismo
13.
Nano Lett ; 19(4): 2215-2222, 2019 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-30543300

RESUMO

Zika virus (ZIKV) has emerged as a global health threat due to its unexpected causal link to devastating neurological disorders such as fetal microcephaly; however, to date, no approved vaccine or specific treatment is available for ZIKV infection. Here we develop a biomimetic nanodecoy (ND) that can trap ZIKV, divert ZIKV away from its intended targets, and inhibit ZIKV infection. The ND, which is composed of a gelatin nanoparticle core camouflaged by mosquito medium host cell membranes, effectively adsorbs ZIKV and inhibits ZIKV replication in ZIKV-susceptible cells. Using a mouse model, we demonstrate that NDs significantly attenuate the ZIKV-induced inflammatory responses and degenerative changes and thus improve the survival rate of ZIKV-challenged mice. Moreover, by trapping ZIKV, NDs successfully prevent ZIKV from passing through physiologic barriers into the fetal brain and thereby mitigate ZIKV-induced fetal microcephaly in pregnant mice. We anticipate that this study will provide new insights into the development of safe and effective protection against ZIKV and various other viruses that threaten public health.


Assuntos
Microcefalia/prevenção & controle , Nanopartículas/administração & dosagem , Infecção por Zika virus/prevenção & controle , Zika virus/efeitos dos fármacos , Animais , Biomimética/métodos , Membrana Celular/efeitos dos fármacos , Membrana Celular/virologia , Culicidae/efeitos dos fármacos , Culicidae/virologia , Modelos Animais de Doenças , Feminino , Feto , Gelatina/administração & dosagem , Gelatina/química , Humanos , Camundongos , Microcefalia/patologia , Microcefalia/virologia , Nanopartículas/química , Gravidez , Zika virus/patogenicidade , Infecção por Zika virus/patologia , Infecção por Zika virus/virologia
14.
J Virol ; 92(22)2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30185588

RESUMO

Viral and episomal DNAs, as signs of infections and dangers, induce a series of immune responses in the host, and cells must sense foreign DNAs to eliminate the invaders. The cell nucleus is not "immune privileged" and exerts intrinsic mechanisms to control nuclear-replicating DNA viruses. Thus, it is important to understand the action of viral DNA sensing in the cell nucleus. Here, we reveal a mechanism of restriction of DNA viruses and episomal plasmids mediated by PJA1, a RING-H2 E3 ubiquitin ligase. PJA1 restricts the DNA viruses hepatitis B virus (HBV) and herpes simplex virus 1 (HSV-1) but not the RNA viruses enterovirus 71 (EV71) and vesicular stomatitis virus (VSV). Similarly, PJA1 inhibits episomal plasmids but not chromosome-integrated reporters or endogenous genes. In addition, PJA1 has no effect on endogenous type I and II interferons (IFNs) and interferon-stimulated genes (ISGs), suggesting that PJA1 silences DNA viruses independent of the IFN pathways. Interestingly, PJA1 interacts with the SMC5/6 complex (a complex essential for chromosome maintenance and HBV restriction) to facilitate the binding of the complex to viral and episomal DNAs in the cell nucleus. Moreover, treatment with inhibitors of DNA topoisomerases (Tops) and knockdown of Tops release PJA1-mediated silencing of viral and extrachromosomal DNAs. Taken together, results of this work demonstrate that PJA1 interacts with SMC5/6 and facilitates the complex to bind and eliminate viral and episomal DNAs through DNA Tops and thus reveal a distinct mechanism underlying restriction of DNA viruses and foreign genes in the cell nucleus.IMPORTANCE DNA viruses, including hepatitis B virus and herpes simplex virus, induce a series of immune responses in the host and lead to human public health concerns worldwide. In addition to cytokines in the cytoplasm, restriction of viral DNA in the nucleus is an important approach of host immunity. However, the mechanism of foreign DNA recognition and restriction in the cell nucleus is largely unknown. This work demonstrates that an important cellular factor (PJA1) suppresses DNA viruses and transfected plasmids independent of type I and II interferon (IFN) pathways. Instead, PJA1 interacts with the chromosome maintenance complex (SMC5/6), facilitates the complex to recognize and bind viral and episomal DNAs, and recruits DNA topoisomerases to restrict the foreign molecules. These results reveal a distinct mechanism underlying the silencing of viral and episomal invaders in the cell nuclei and suggest that PJA1 acts as a potential agent to prevent infectious and inflammatory diseases.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Infecções por Vírus de DNA/genética , Vírus de DNA/genética , Plasmídeos/genética , Ubiquitina-Proteína Ligases/metabolismo , Replicação Viral , Antivirais/farmacologia , Proteínas de Ciclo Celular/genética , Proteínas Cromossômicas não Histona/genética , Infecções por Vírus de DNA/tratamento farmacológico , Infecções por Vírus de DNA/virologia , Vírus de DNA/efeitos dos fármacos , DNA Viral/genética , Células Hep G2 , Interações Hospedeiro-Patógeno , Humanos , Interferons/farmacologia , Ubiquitina-Proteína Ligases/genética
15.
PLoS Pathog ; 13(1): e1006123, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28060938

RESUMO

Activation of NLRP3 inflammasome is important for effective host defense against invading pathogen. Together with apoptosis-associated speck-like protein containing CARD domain (ASC), NLRP3 induces the cleavage of caspase-1 to facilitate the maturation of interleukin-1beta (IL-1ß), an important pro-inflammatory cytokine. IL-1ß subsequently plays critical roles in inflammatory responses by activating immune cells and inducing many secondary pro-inflammatory cytokines. Although the role of NLRP3 inflammasome in immune response is well defined, the mechanism underlying its assembly modulated by pathogen infection remains largely unknown. Here, we identified a novel mechanism by which enterovirus 71 (EV71) facilitates the assembly of NLRP3 inflammasome. Our results show that EV71 induces production and secretion of IL-1ß in macrophages and peripheral blood mononuclear cells (PBMCs) through activation of NLRP3 inflammasome. EV71 replication and protein synthesis are required for NLRP3-mediated activation of IL-1ß. Interestingly, EV71 3D protein, a RNA-dependent RNA polymerase (RdRp) was found to stimulate the activation of NLRP3 inflammasome, the cleavage of pro-caspase-1, and the release of IL-1ß through direct binding to NLRP3. More importantly, 3D interacts with NLRP3 to facilitate the assembly of inflammasome complex by forming a 3D-NLRP3-ASC ring-like structure, resulting in the activation of IL-1ß. These findings demonstrate a new role of 3D as an important player in the activation of inflammatory response, and identify a novel mechanism underlying the modulation of inflammasome assembly and function induced by pathogen invasion.


Assuntos
Enterovirus Humano A/patogenicidade , Infecções por Enterovirus/patologia , Inflamassomos/metabolismo , Interleucina-1beta/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , RNA Polimerase Dependente de RNA/metabolismo , Proteínas não Estruturais Virais/metabolismo , Proteínas Adaptadoras de Sinalização CARD , Caspase 1/metabolismo , Linhagem Celular Tumoral , Proteínas do Citoesqueleto/metabolismo , Enterovirus Humano A/metabolismo , Infecções por Enterovirus/imunologia , Infecções por Enterovirus/virologia , Ativação Enzimática/imunologia , Células HEK293 , Humanos , Interleucina-1beta/imunologia , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Ligação Proteica/fisiologia
16.
PLoS Pathog ; 13(4): e1006321, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28394926

RESUMO

Hepatitis C virus (HCV) infection is a leading cause of chronic liver diseases and hepatocellular carcinoma (HCC) and Golgi protein 73 (GP73) is a serum biomarker for liver diseases and HCC. However, the mechanism underlying GP73 regulates HCV infection is largely unknown. Here, we revealed that GP73 acts as a novel negative regulator of host innate immunity to facilitate HCV infection. GP73 expression is activated and correlated with interferon-beta (IFN-ß) production during HCV infection in patients' serum, primary human hepatocytes (PHHs) and human hepatoma cells through mitochondrial antiviral signaling protein (MAVS), TNF receptor-associated factor 6 (TRAF6) and mitogen-activated protein kinase kinase/extracellular regulated protein kinase (MEK/ERK) pathway. Detailed studies revealed that HCV infection activates MAVS that in turn recruits TRAF6 via TRAF-interacting-motifs (TIMs), and TRAF6 subsequently directly recruits GP73 to MAVS via coiled-coil domain. After binding with MAVS and TRAF6, GP73 promotes MAVS and TRAF6 degradation through proteasome-dependent pathway. Moreover, GP73 attenuates IFN-ß promoter, IFN-stimulated response element (ISRE) and nuclear factor κB (NF-κB) promoter and down-regulates IFN-ß, IFN-λ1, interleukin-6 (IL-6) and IFN-stimulated gene 56 (ISG56), leading to the repression of host innate immunity. Finally, knock-down of GP73 down-regulates HCV infection and replication in Huh7-MAVSR cells and primary human hepatocytes (PHHs), but such repression is rescued by GP73m4 (a mutant GP73 resists to GP73-shRNA#4) in Huh7-MAVSR cells, suggesting that GP73 facilitates HCV infection. Taken together, we demonstrated that GP73 acts as a negative regulator of innate immunity to facilitate HCV infection by interacting with MAVS/TRAF6 and promoting MAVS/TRAF6 degradation. This study provides new insights into the mechanism of HCV infection and pathogenesis, and suggests that GP73 is a new potential antiviral target in the prevention and treatment of HCV associated diseases.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Hepacivirus/isolamento & purificação , Hepatócitos/virologia , Neoplasias Hepáticas/virologia , Proteínas de Membrana/metabolismo , Fator 6 Associado a Receptor de TNF/metabolismo , Antivirais/metabolismo , Carcinoma Hepatocelular/metabolismo , Linhagem Celular , Hepatite C/metabolismo , Hepatite C/virologia , Humanos , Interferon beta/metabolismo , Interferons/metabolismo , Neoplasias Hepáticas/metabolismo , Proteínas de Membrana/genética , Replicação Viral/imunologia
17.
PLoS Pathog ; 13(8): e1006585, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28854257

RESUMO

Enterovirus 71 (EV71) is an RNA virus that causes hand-foot-mouth disease (HFMD), and even fatal encephalitis in children. Although EV71 pathogenesis remains largely obscure, host immune responses may play important roles in the development of diseases. Recognition of pathogens mediated by Toll-like receptors (TLRs) induces host immune and inflammatory responses. Intracellular TLRs must traffic from the endoplasmic reticulum (ER) to the endolysosomal network from where they initiate complete signaling, leading to inflammatory response. This study reveals a novel mechanism underlying the regulation of TLR7 signaling during EV71 infection. Initially, we show that multiple cytokines are differentially expressed during viral infection and demonstrate that EV71 infection induces the production of proinflammatory cytokines through regulating TLR7-mediated p38 MAPK, and NF-κB signaling pathways. Further studies reveal that the expression of the endosome-associated protein hepatocyte growth factor-regulated tyrosine kinase substrate (HRS) is upregulated and highly correlated with the expression of TLR7 in EV71 infected patients, mice, and cultured cells. Virus-induced HRS subsequently enhances TLR7 complex formation in early- and late-endosome by interacting with TLR7 and TAB1. Moreover, HRS is involved in the regulation of the TLR7/NF-κB/p38 MAPK and the TLR7/NF-κB/IRF3 signaling pathways to induce proinflammatory cytokines and interferons, respectively, resulting in the orchestration of inflammatory and immune responses to the EV71 infection. Therefore, this study demonstrates that HRS acts as a key component of TLR7 signaling to orchestrate immune and inflammatory responses during EV71 infection, and provides new insights into the mechanisms underlying the regulation of host inflammation and innate immunity during EV71 infection.


Assuntos
Infecções por Coxsackievirus/imunologia , Complexos Endossomais de Distribuição Requeridos para Transporte/imunologia , Enterovirus Humano A/imunologia , Imunidade Inata/imunologia , Inflamação/imunologia , Fosfoproteínas/imunologia , Animais , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Técnicas de Silenciamento de Genes , Humanos , Immunoblotting , Imunoprecipitação , Inflamação/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Microscopia de Fluorescência , Fosfoproteínas/metabolismo , Reação em Cadeia da Polimerase , Transdução de Sinais/imunologia
18.
J Org Chem ; 84(24): 16019-16026, 2019 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-31750657

RESUMO

A series of monosubstituted 1,2,4,5-tetrazine-based energetic materials was effectively synthesized and fully characterized with IR, multinuclear nuclear magnetic resonance (NMR), and elemental analyses. Heats of formation and detonation performances were determined using Gaussian 03 and EXPLO5 v6.01 programs, which show that 5 and 9 as secondary explosives have detonation velocities superior to the current secondary-explosive benchmark, triaminotrinitrobenzene (TATB). Importantly, compounds 2, 5, and 9 were first characterized with single-crystal X-ray diffraction and Hirshfeld surface calculations, and some intermolecular weak hydrogen bonds (Het-H-N/O) among these compounds illustrate the relationship between these weak interactions and excellent sensitivity of energetic materials. This design method for next-generation energetic materials by incorporating intermolecular weak hydrogen bonds may be of future importance.

19.
J Immunol ; 199(9): 3280-3292, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28954889

RESUMO

Host innate immunity is crucial for cellular responses against viral infection sensed by distinct pattern recognition receptors and endoplasmic reticulum (ER) stress. Enterovirus 71 (EV71) is a causative agent of hand, foot, and mouth disease and neurological diseases. However, the exact mechanism underlying the link between ER stress induced by EV71 infection and host innate immunity is largely unknown. In this study, we demonstrated that EV71 infection induces the homocysteine-induced ER protein (HERP), a modulator of the ER stress response which is dependent on the participation of MAVS. Virus-induced HERP subsequently stimulates host innate immunity to repress viral replication by promoting type-I IFNs (IFN-α and IFN-ß) and type-III IFN (IFN-λ1) expression. Through interacting with TANK-binding kinase 1, HERP amplifies the MAVS signaling and facilitates the phosphorylation and nuclear translocation of IFN regulatory factor 3 and NF-κB to enhance the expression of IFNs, which leads to a broad inhibition of the replication of RNA viruses, including EV71, Sendai virus, influenza A virus, and vesicular stomatitis virus. Therefore, we demonstrated that HERP plays an important role in the regulation of host innate immunity in response to ER stress during the infection of RNA viruses. These findings provide new insights into the mechanism underlying the replication of RNA viruses and the production of IFNs, and also demonstrate a new role of HERP in the regulation of host innate immunity in response to viral infection.


Assuntos
Estresse do Retículo Endoplasmático/imunologia , Imunidade Inata , Proteínas de Membrana/imunologia , Proteínas Serina-Treonina Quinases/imunologia , Infecções por Vírus de RNA/imunologia , Vírus de RNA/fisiologia , Replicação Viral/imunologia , Animais , Estresse do Retículo Endoplasmático/genética , Feminino , Humanos , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/imunologia , Interferons/genética , Interferons/imunologia , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Serina-Treonina Quinases/genética , Infecções por Vírus de RNA/genética , Infecções por Vírus de RNA/patologia
20.
J Cell Sci ; 129(24): 4534-4547, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27875274

RESUMO

Enterovirus 71 (EV71) possesses a single-stranded positive RNA genome that contains a single open reading frame (ORF) flanked by a 5' untranslated region (5'UTR) and a polyadenylated 3'UTR. Here, we demonstrated that EV71 activates the production of silent mating type information regulation 2 homolog 1 (SIRT1), a histone deacetylase (HDAC). EV71 further stimulates SIRT1 sumoylation and deacetylase activity, and enhances SIRT1 translocation from the nucleus to the cytoplasm. More interestingly, activated SIRT1 subsequently binds with the EV71 3Dpol protein (a viral RNA-dependent RNA polymerase, RdRp) to repress the acetylation and RdRp activity of 3Dpol, resulting in the attenuation of viral genome replication. Moreover, SIRT1 interacts with the cloverleaf structure of the EV71 RNA 5'UTR to inhibit viral RNA transcription, and binds to the internal ribosome entry site (IRES) of the EV71 5'UTR to attenuate viral RNA translation. Thus, EV71 stimulates SIRT1 production and activity, which in turn represses EV71 genome replication by inhibiting viral polymerase, and attenuates EV71 RNA transcription and translation by interfering with viral RNA. These results uncover a new function of SIRT1 and reveal a new mechanism underlying the regulation of EV71 replication.


Assuntos
Regiões 5' não Traduzidas/genética , Enterovirus Humano A/genética , Genoma Viral , Biossíntese de Proteínas , RNA Viral/metabolismo , RNA Polimerase Dependente de RNA/metabolismo , Sirtuína 1/metabolismo , Replicação Viral , Regiões 3' não Traduzidas/genética , Acetilação , Linhagem Celular , Núcleo Celular , Enterovirus Humano A/fisiologia , Humanos , Sítios Internos de Entrada Ribossomal , Modelos Biológicos , Conformação de Ácido Nucleico , Ligação Proteica , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Sumoilação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA