Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Mikrochim Acta ; 191(7): 432, 2024 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-38951266

RESUMO

Cystinuria is a genetic disorder, and in severe cases, it might lead to kidney failure. As an important biomarker for cystinuria, the level of arginine (Arg) in urine is a vital indicator for cystinuria screening. Therefore, it is urgently needed to detect Arg with high selectivity and sensitivity. In this work, a boric acid functionalized Zr-based metal-organic framework UiO-PhbA is prepared by grafting phenylboronic acid on UiO-66-NH2 through a Schiff base reaction using a covalent post-synthesis modification (CPSM) strategy. The prepared UiO-PhbA exhibits a sensitive and specific fluorescence "turn-on" response to Arg and can be exploited to detect Arg in human serum and urine samples with a broad linear range of 0.6-350 µM and low limit of detection (LOD) of 18.45 nM. This study provides a new and reliable rapid screening protocol for sulfite oxidase deficiency-related diseases.


Assuntos
Arginina , Biomarcadores , Ácidos Borônicos , Cistinúria , Corantes Fluorescentes , Limite de Detecção , Estruturas Metalorgânicas , Humanos , Cistinúria/diagnóstico , Cistinúria/urina , Estruturas Metalorgânicas/química , Corantes Fluorescentes/química , Arginina/química , Arginina/sangue , Biomarcadores/urina , Biomarcadores/sangue , Ácidos Borônicos/química , Espectrometria de Fluorescência/métodos , Zircônio/química
2.
ACS Nano ; 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39028766

RESUMO

In order to expand the applicability of materials and improve their performance, the combined use of different materials has increasingly been explored. Among these materials, inorganic-organic hybrid materials often exhibit properties superior to those of single materials. Covalent organic frameworks (COFs) are famous crystalline porous materials constructed by organic building blocks linked by covalent bonds. In recent years, the combination of COFs with other materials has shown interesting properties in diverse fields, and the composite materials of COFs and TiO2 have been investigated more and more. These two outstanding materials are combined through covalent bonding, physical mixing, and other methods and exhibit excellent performance in various fields, including photocatalysis, electrocatalysis, sensors, separation, and energy storage and conversion. In this Review, the current preparation methods and applications of COF-TiO2 hybrid materials are introduced in detail, and their future development and possible problems are discussed and prospected, which is of great significance for related research. It is believed that these interesting hybrid materials will show greater application value as research progresses.

3.
Spectrochim Acta A Mol Biomol Spectrosc ; 323: 124932, 2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39116596

RESUMO

The trace amount of water in organic solvents can affect the progress of chemical reactions, which will adversely affect chemical production in many industries, resulting in a doubling of costs. In this work, carbon dots (CDs) with abundant polar groups were synthesized by a simple one-step hydrothermal method. The prepared CDs showed superior dispersibility and fluorescence performance compared to the CDs that have been reported for the detection of water content in organic solvents. It can realize the fluorescence detection of trace water in several water-soluble organic solvents such as N,N-dimethylformamide, ethanol and methanol with wide linear range (0 %-100 %) and high sensitivity. This will provide a powerful tool for the rapid detection of water content in organic solvents in chemical production.

4.
Dalton Trans ; 53(10): 4479-4491, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38348673

RESUMO

Metal-organic frameworks (MOFs) have found wide applications in the field of supercapacitors due to their highly controllable porous structure, big specific surface area, and abundant chemical functional groups. MOF-on-MOF hybrids not only enhance the composition of MOFs (such as ligands and/or metal centers) but also provide greater structural diversity. By utilizing MOFs as precursors for preparing sulfides, the unique characteristics and inherent structure of MOFs are preserved but their conductivity and capacitance are enhanced. This study successfully synthesized hollow-structured Ni3S4@Co3S4 derived from an Ni-MOF@ZIF-67 hybrid structure, where the Ni-MOF serves as the core and ZIF-67 as the satellite. The Ni3S4@Co3S4 electrode demonstrated a specific capacity as high as 747.3 C g-1 at 1 A g-1, and it could still maintain 77% of its initial capacity at 10 A g-1. Furthermore, the assembled Ni3S4@Co3S4//AC hybrid supercapacitor (HSC) device achieved a maximum energy density of 30.8 W h kg-1 when the power density was 750 W kg-1. The device exhibited remarkable cycling durability, retaining 85.4% of its initial capacitance after 5000 cycles. Therefore, the derived functional materials based on MOF-on-MOF provide a more scalable and promising approach for the preparation of efficient electrode materials.

5.
ChemSusChem ; : e202400732, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38661456

RESUMO

Covalent organic frameworks (COFs) and their applications in photocatalysis have been extensively studied, but the instability of imine-linked COFs is an important factor limiting their performance. In this work, two imine-linked COFs were successfully converted to amide-linked COFs through post synthetic modification (PSM). The oxidized COFs presented lower binding energy to O2, exhibited higher photocatalytic activity for oxidation of thioethers and coupling of benzylamines with excellent stability. The present work can serve as a reliable reference for the development of novel highly active and stable COF-based photocatalysts.

6.
ACS Sens ; 9(1): 315-324, 2024 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-38134362

RESUMO

The vinyl chloride monomer (VCM), a common raw material in the plastics industry, is one of the environmental pollutants to which humans are mostly exposed. Thiodiglycolic acid (TDGA) in human urine is a specific biomarker of its exposure. TDGA plays an important role in understanding the relationships between exposure to the VCM and the identification of subgroups that are at increased risk for disease diagnosis. Therefore, its detection is of great significance. Here, we designed and established a ratiometric fluorescent sensor for TDGA by using Eu3+ as a bridge connecting the covalent organic framework (COF) and the energy donor molecule 2,6-dipicolinic acid (DPA) and named it DPA/Eu@PY-DHPB-COF-COOH. The sensor not only possesses the advantages of a ratiometric fluorescent sensor that can provide built-in self-calibration to correct a variety of target-independent factors but also presents high selectivity and high sensitivity. Currently, there are only a few reports on the detection of TDGA, and to the extent of our knowledge, this report is the first work on the detection of TDGA based on a COF system; so, it has an important reference value and lays a solid foundation for designing advanced sensors of TDGA.


Assuntos
Estruturas Metalorgânicas , Cloreto de Vinil , Humanos , Cloreto de Vinil/efeitos adversos , Biomarcadores/urina , Tioglicolatos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA