Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 621(7977): 75-81, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37673990

RESUMO

Benefiting from high energy density (2,600 Wh kg-1) and low cost, lithium-sulfur (Li-S) batteries are considered promising candidates for advanced energy-storage systems1-4. Despite tremendous efforts in suppressing the long-standing shuttle effect of lithium polysulfides5-7, understanding of the interfacial reactions of lithium polysulfides at the nanoscale remains elusive. This is mainly because of the limitations of in situ characterization tools in tracing the liquid-solid conversion of unstable lithium polysulfides at high temporal-spatial resolution8-10. There is an urgent need to understand the coupled phenomena inside Li-S batteries, specifically, the dynamic distribution, aggregation, deposition and dissolution of lithium polysulfides. Here, by using in situ liquid-cell electrochemical transmission electron microscopy, we directly visualized the transformation of lithium polysulfides over electrode surfaces at the atomic scale. Notably, an unexpected gathering-induced collective charge transfer of lithium polysulfides was captured on the nanocluster active-centre-immobilized surface. It further induced an instantaneous deposition of nonequilibrium Li2S nanocrystals from the dense liquid phase of lithium polysulfides. Without mediation of active centres, the reactions followed a classical single-molecule pathway, lithium polysulfides transforming into Li2S2 and Li2S step by step. Molecular dynamics simulations indicated that the long-range electrostatic interaction between active centres and lithium polysulfides promoted the formation of a dense phase consisting of Li+ and Sn2- (2 < n ≤ 6), and the collective charge transfer in the dense phase was further verified by ab initio molecular dynamics simulations. The collective interfacial reaction pathway unveils a new transformation mechanism and deepens the fundamental understanding of Li-S batteries.

2.
Nature ; 618(7963): 69-73, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37259001

RESUMO

Since the discovery of X-rays by Roentgen in 1895, its use has been ubiquitous, from medical and environmental applications to materials sciences1-5. X-ray characterization requires a large number of atoms and reducing the material quantity is a long-standing goal. Here we show that X-rays can be used to characterize the elemental and chemical state of just one atom. Using a specialized tip as a detector, X-ray-excited currents generated from an iron and a terbium atom coordinated to organic ligands are detected. The fingerprints of a single atom, the L2,3 and M4,5 absorption edge signals for iron and terbium, respectively, are clearly observed in the X-ray absorption spectra. The chemical states of these atoms are characterized by means of near-edge X-ray absorption signals, in which X-ray-excited resonance tunnelling (X-ERT) is dominant for the iron atom. The X-ray signal can be sensed only when the tip is located directly above the atom in extreme proximity, which confirms atomically localized detection in the tunnelling regime. Our work connects synchrotron X-rays with a quantum tunnelling process and opens future X-rays experiments for simultaneous characterizations of elemental and chemical properties of materials at the ultimate single-atom limit.

3.
Proc Natl Acad Sci U S A ; 121(5): e2313096121, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38261613

RESUMO

Ether solvents are suitable for formulating solid-electrolyte interphase (SEI)-less ion-solvent cointercalation electrolytes in graphite for Na-ion and K-ion batteries. However, ether-based electrolytes have been historically perceived to cause exfoliation of graphite and cell failure in Li-ion batteries. In this study, we develop strategies to achieve reversible Li-solvent cointercalation in graphite through combining appropriate Li salts and ether solvents. Specifically, we design 1M LiBF4 1,2-dimethoxyethane (G1), which enables natural graphite to deliver ~91% initial Coulombic efficiency and >88% capacity retention after 400 cycles. We captured the spatial distribution of LiF at various length scales and quantified its heterogeneity. The electrolyte shows self-terminated reactivity on graphite edge planes and results in a grainy, fluorinated pseudo-SEI. The molecular origin of the pseudo-SEI is elucidated by ab initio molecular dynamics (AIMD) simulations. The operando synchrotron analyses further demonstrate the reversible and monotonous phase transformation of cointercalated graphite. Our findings demonstrate the feasibility of Li cointercalation chemistry in graphite for extreme-condition batteries. The work also paves the foundation for understanding and modulating the interphase generated by ether electrolytes in a broad range of electrodes and batteries.

4.
J Am Chem Soc ; 146(15): 10357-10366, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38574191

RESUMO

Electrochemical reduction of carbon dioxide to organic chemicals provides a value-added route for mitigating greenhouse gas emissions. We report a family of carbon-supported Sn electrocatalysts with the tin size varying from single atom, ultrasmall clusters to nanocrystallites. High single-product Faradaic efficiency (FE) and low onset potential of CO2 conversion to acetate (FE = 90% @ -0.6 V), ethanol (FE = 92% @ -0.4 V), and formate (FE = 91% @ -0.6 V) were achieved over the catalysts of different active site dimensions. The CO2 conversion mechanism behind these highly selective, size-modulated p-block element catalysts was elucidated by structural characterization and computational modeling, together with kinetic isotope effect investigation.

5.
J Am Chem Soc ; 146(19): 13093-13104, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38690763

RESUMO

The cluster-based body-centered-cubic superlattice (cBCC SL) represents one of the most complicated structures among reported nanocrystal assemblies, comprised of 72 truncated tetrahedral quantum dots per unit cell. Our previous report revealed that truncated tetrahedral quantum dots within cBCC SLs possessed highly controlled translational and orientational order owing to an unusual energetic landscape based on the balancing of entropic and enthalpic contributions during the assembly process. However, the cBCC SL's structural transformability and mechanical properties, uniquely originating from such complicated nanostructures, have yet to be investigated. Herein, we report that cBCC SLs can undergo dynamic transformation to face-centered-cubic SLs in response to post-assembly molecular exposure. We monitored the dynamic transformation process using in situ synchrotron-based small-angle X-ray scattering, revealing a dynamic transformation involving multiple steps underpinned by interactions between incoming molecules and TTQDs' surface ligands. Furthermore, our mechanistic study demonstrated that the precise configuration of TTQDs' ligand molecules in cBCC SLs was key to their high structural transformability and unique jelly-like soft mechanical properties. While ligand molecular configurations in nanocrystal SLs are often considered minor features, our findings emphasize their significance in controlling weak van der Waals interactions between nanocrystals within assembled SLs, leading to previously unremarked superstructural transformability and unique mechanical properties. Our findings promote a facile route toward further creation of soft materials, nanorobotics, and out-of-equilibrium assemblies based on nanocrystal building blocks.

6.
J Synchrotron Radiat ; 31(Pt 1): 55-64, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37930257

RESUMO

X-ray photon correlation spectroscopy (XPCS) holds strong promise for observing atomic-scale dynamics in materials, both at equilibrium and during non-equilibrium transitions. Here an in situ XPCS study of the relaxor ferroelectric PbMg1/3Nb2/3O3 (PMN) is reported. A weak applied AC electric field generates strong response in the speckle of the diffuse scattering from the polar nanodomains, which is captured using the two-time correlation function. Correlated motions of the Bragg peak are also observed, which indicate dynamic tilting of the illuminated volume. This tilting quantitatively accounts for the observed two-time speckle correlations. The magnitude of the tilting would not be expected solely from the modest applied field, since PMN is an electrostrictive material with no linear strain response to the field. A model is developed based on non-uniform static charging of the illuminated surface spot by the incident micrometre-scale X-ray beam and the electrostrictive material response to the combination of static and dynamic fields. The model qualitatively explains the direction and magnitude of the observed tilting, and predicts that X-ray-induced piezoresponse could be an important factor in correctly interpreting results from XPCS and nanodiffraction studies of other insulating materials under applied AC field or varying X-ray illumination.

7.
Biomacromolecules ; 25(6): 3398-3408, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38752597

RESUMO

Peptide materials often employ short peptides that self-assemble into unique nanoscale architectures and have been employed across many fields relevant to medicine and energy. A majority of peptide materials are high in ß-sheet, secondary structure content, including heme-binding peptide materials. To broaden the structural diversity of heme-binding peptide materials, a small series of peptides were synthesized to explore the design criteria required for (1) folding into an α-helix structure, (2) assembling into a nanoscale material, (3) binding heme, and (4) demonstrating functions similar to that of heme proteins. One peptide was identified to meet all four criteria, including the heme protein function of CO binding and its microsecond-to-millisecond recombination rates, as measured by transient absorption spectroscopy. Implications of new design criteria and peptide material function through heme incorporation are discussed.


Assuntos
Heme , Peptídeos , Conformação Proteica em alfa-Hélice , Heme/química , Peptídeos/química , Estrutura Secundária de Proteína
8.
Nature ; 561(7723): 378-382, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30232427

RESUMO

The assembly of uniform nanocrystal building blocks into well ordered superstructures is a fundamental strategy for the generation of meso- and macroscale metamaterials with emergent nanoscopic functionalities1-10. The packing of spherical nanocrystals, which frequently adopt dense, face-centred-cubic or hexagonal-close-packed arrangements at thermodynamic equilibrium, has been much more widely studied than that of non-spherical, polyhedral nanocrystals, despite the fact that the latter have intriguing anisotropic properties resulting from the shapes of the building blocks11-13. Here we report the packing of truncated tetrahedral quantum dot nanocrystals into three distinct superstructures-one-dimensional chiral tetrahelices, two-dimensional quasicrystal-approximant superlattices and three-dimensional cluster-based body-centred-cubic single supercrystals-by controlling the assembly conditions. Using techniques in real and reciprocal spaces, we successfully characterized the superstructures from their nanocrystal translational orderings down to the atomic-orientation alignments of individual quantum dots. Our packing models showed that formation of the nanocrystal superstructures is dominated by the selective facet-to-facet contact induced by the anisotropic patchiness of the tetrahedra. This study provides information about the packing of non-spherical nanocrystals into complex superstructures, and may enhance the potential of self-assembled nanocrystal metamaterials in practical applications.

9.
Nano Lett ; 23(4): 1459-1466, 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36758173

RESUMO

Electrocatalytic nitrate to ammonia conversion is a key reaction for energy and environmental sustainability. This reaction involves complex multi electron and proton transfer steps, and is impeded by the lack of catalyst for promoting both reactivity and ammonia selectivity. Here, we demonstrate active motifs based on the Chevrel phase Co2Mo6S8 exhibit an enzyme-like high turnover frequency of ∼95.1 s-1 for nitrate electroreduction to ammonia. We reveal strong synergy of multiple binding sites on this catalyst, such that the ligand effect of Co steers Had* toward hydrogenation other than hydrogen evolution, the ensemble effect of Co, and the spatial confinement effect that promote the full hydrogenation of NOx to ammonia without N-N coupling. The catalyst exhibits almost exclusive ammonia conversion with a Faradaic efficiency of 97.1% and ammonia yielding rate of 115.5 mmol·gcat-1·h-1 in neutral electrolytes. The high activity was also confirmed in electrolytes with dilute nitrate and high chloride concentrations.

10.
J Am Chem Soc ; 145(40): 21886-21896, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37768875

RESUMO

Developing Type-I core/shell quantum dots is of great importance toward fabricating stable and sustainable photocatalysts. However, the application of Type-I systems has been limited due to the strongly confined photogenerated charges by the energy barrier originating from the wide-bandgap shell material. In this project, we found that through the decoration of Au satellite-type domains on the surface of Type-I CdS/ZnS core/shell quantum dots, such an energy barrier can be effectively overcome and an over 400-fold enhancement of photocatalytic H2 evolution rate was achieved compared to bare CdS/ZnS quantum dots. Transient absorption spectroscopic studies indicated that the charges can be effectively extracted and subsequently transferred to surrounding molecular substrates in a subpicosecond time scale in such hybrid nanocrystals. Based on density functional theory calculations, the ultrafast charge separation rates were ascribed to the formation of intermediate Au2S layer at the semiconductor-metal interface, which can successfully offset the energy confinement introduced by the ZnS shell. Our findings not only provide insightful understandings on charge carrier dynamics in semiconductor-metal heterostructural materials but also pave the way for the future design of quantum dot-based hybrid photocatalytic systems.

11.
Small ; 19(15): e2206947, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36631255

RESUMO

Two large barriers are impeding the wide implementation of electric vehicles, namely driving-range and cost, primarily due to the low specific energy and high cost of mono-valence cathodes used in lithium-ion batteries. Iron is the ideal element for cathode materials considering its abundance, low cost and toxicity. However, the poor reversibility of (de)lithiation and low electronic conductivity prevent iron-based high specific energy multi-valence conversion cathodes from practical applications. In this work, a sustainable FeOF nanocomposite is developed with extraordinary performance. The specific capacity and energy reach 621 mAh g-1 and 1124 Wh kg-1 with more than 100 cycles, which triples the specific capacity, and doubles the specific energy of current mono-valence intercalation LiCoO2 . This is the result of an effective approach, combing the nanostructured FeOF with graphene, realized by making the (de)lithiation reversible by immobilizing FeOF nanoparticles and the discharge products over the graphene surface and providing the interparticle electric conduction. Importantly, it demonstrates that introducing small amount of graphene can create new materials with desired properties, opening a new avenue for altering the (de)lithiation process. Such extraordinary performance represents a significant breakthrough in developing sustainable conversion materials, eventually overcoming the driving range and cost barriers.

12.
Nat Mater ; 21(7): 795-803, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35501365

RESUMO

Intercalation-type metal oxides are promising negative electrode materials for safe rechargeable lithium-ion batteries due to the reduced risk of Li plating at low voltages. Nevertheless, their lower energy and power density along with cycling instability remain bottlenecks for their implementation, especially for fast-charging applications. Here, we report a nanostructured rock-salt Nb2O5 electrode formed through an amorphous-to-crystalline transformation during repeated electrochemical cycling with Li+. This electrode can reversibly cycle three lithiums per Nb2O5, corresponding to a capacity of 269 mAh g-1 at 20 mA g-1, and retains a capacity of 191 mAh g-1 at a high rate of 1 A g-1. It exhibits superb cycling stability with a capacity of 225 mAh g-1 at 200 mA g-1 for 400 cycles, and a Coulombic efficiency of 99.93%. We attribute the enhanced performance to the cubic rock-salt framework, which promotes low-energy migration paths. Our work suggests that inducing crystallization of amorphous nanomaterials through electrochemical cycling is a promising avenue for creating unconventional high-performance metal oxide electrode materials.

13.
Nanotechnology ; 34(23)2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36827694

RESUMO

Group IV elements and their oxides, such as Si, Ge, Sn and SiO have much higher theoretical capacity than commercial graphite anode. However, these materials undergo large volume change during cycling, resulting in severe structural degradation and capacity fading. Al2O3coating is considered an approach to improve the mechanical stability of high-capacity anode materials. To understand the effect of Al2O3coating directly, we monitored the morphology change of coated/uncoated Sn particles during cycling using operando focused ion beam-scanning electron microscopy. The results indicate that the Al2O3coating provides local protection and reduces crack formation at the early stage of volume expansion. The 3 nm Al2O3coating layer provides better protection than the 10 and 30 nm coating layer. Nevertheless, the Al2O3coating is unable to prevent the pulverization at the later stage of cycling because of large volume expansion.

14.
Phys Chem Chem Phys ; 25(45): 30761-30784, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37830239

RESUMO

Batteries and electrochemical capacitors (ECs) are of critical importance for applications such as electric vehicles, electric grids, and mobile devices. However, the performance of existing battery and EC technologies falls short of meeting the requirements of high energy/high power and long durability for increasing markets such as the automotive industry, aerospace, and grid-storage utilizing renewable energies. Therefore, improving energy storage materials performance metrics is imperative. In the past two decades, radiation has emerged as a new means to modify functionalities in energy storage materials. There exists a common misconception that radiation with energetic ions and electrons will always cause radiation damage to target materials, which might potentially prevent its applications in electrochemical energy storage systems. But in this review, we summarize recent progress in radiation effects on materials for electrochemical energy storage systems to show that radiation can have both beneficial and detrimental effects on various types of energy materials. Prior work suggests that fundamental understanding toward the energy loss mechanisms that govern the resulting microstructure, defect generation, interfacial properties, mechanical properties, and eventual electrochemical properties is critical. We discuss radiation effects in the following categories: (1) defect engineering, (2) interface engineering, (3) radiation-induced degradation, and (4) radiation-assisted synthesis. We analyze the significant trends and provide our perspectives and outlook on current research and future directions in research seeking to harness radiation as a method for enhancing the synthesis and performance of battery materials.

15.
Small ; 18(26): e2202720, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35637629

RESUMO

Nitrogen (N2 ) is an essential element for life, but kinetically stable N2 in the atmosphere needs to be reduced to biologically available forms as a nutrient for organisms. Abiotic nitrogen fixation is critical to the origin of life on the early Earth, which is due to lightning or mineral-based reduction. Here, synchrotron X-ray-induced silver nitrate formation on a silver copper (AgCu) thin-film is reported. Time-resolved X-ray diffraction measurements show that under intense X-ray exposure, initially formed silver oxides (AgOx) are quickly converted to silver nitrate (AgNO3 ). Interestingly, AgNO3 is first formed in its high-temperature phase with a space group of R3cH, which gradually transforms to the room temperature phase with a space group of Pbca under continuous X-ray irradiation. The result not only provides a new clue about the abiotic nitrogen reduction prior to life but also demonstrates a novel strategy of materials synthesis using synchrotron X-rays.


Assuntos
Nitrogênio , Síncrotrons , Atmosfera , Nitrato de Prata , Raios X
16.
Nano Lett ; 21(4): 1742-1748, 2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33570961

RESUMO

Understanding the behavior of high-entropy alloy (HEA) materials under hydrogen (H2) environment is of utmost importance for their promising applications in structural materials, catalysis, and energy-related reactions. Herein, the reduction behavior of oxidized FeCoNiCuPt HEA nanoparticles (NPs) in atmospheric pressure H2 environment was investigated by in situ gas-cell transmission electron microscopy (TEM). The reduction reaction front was maintained at the external surface of the oxide. During reduction, the oxide layer expanded and transformed into porous structures where oxidized Cu was fully reduced to Cu NPs while Fe, Co, and Ni remained in the oxidized form. In situ chemical analysis showed that the expansion of the oxide layer resulted from the outward diffusion flux of all transition metals (Fe, Co, Ni, Cu). Revealing the H2 reduction behavior of HEA NPs facilitates the development of advanced multicomponent alloys for applications targeting H2 formation and storage, catalytic hydrogenation, and corrosion removal.

17.
Nano Lett ; 21(3): 1288-1294, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33464913

RESUMO

Nanoplatelets (NPLs)-colloidally synthesized, spatially anisotropic, two-dimensional semiconductor quantum wells-are of intense interest owing to exceptionally narrow transition line widths, coupled with solution processability and bandgap tunability. However, given large surface areas and undercoordinated bonding at facet corners and edges, excitation under sufficient intensities may induce anisotropic structural instabilities that impact desired properties. We employ time-resolved X-ray diffraction to study the crystal structure of CdSe NPLs in response to optical excitation. Photoexcitation induces greater out-of-plane than in-plane disordering in 4 and 5 monolayer (ML) NPLs, while 3 ML NPLs display the opposite behavior. Recovery dynamics suggest that out-of-plane cooling slightly outpaces in-plane cooling in 5 ML NPLs with recrystallization occurring on indistinguishable time scales. In comparison, for zero-dimensional CdSe nanocrystals, disordering is isotropic and recovery is faster. These results favor the use of NPLs in optoelectronic applications, where they are likely to exhibit superior performance over traditional, zero-dimensional nanocrystals.

18.
Nat Mater ; 19(8): 887-893, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32284599

RESUMO

A number of grain boundary phenomena in ionic materials, in particular, anomalous (either depressed or enhanced) charge transport, have been attributed to space charge effects. Developing effective strategies to manipulate transport behaviour requires deep knowledge of the origins of the interfacial charge, as well as its variability within a polycrystalline sample with millions of unique grain boundaries. Electron holography is a powerful technique uniquely suited for studying the electric potential profile at individual grain boundaries, whereas atom-probe tomography provides access to the chemical identify of essentially every atom at individual grain boundaries. Using these two techniques, we show here that the space charge potential at grain boundaries in lightly doped, high-purity ceria can vary by almost an order of magnitude. We further find that trace impurities (<25 ppm), rather than inherent thermodynamic factors, may be the ultimate source of grain boundary charge. These insights suggest chemical tunability of grain boundary transport properties.

19.
Nat Mater ; 19(7): 712-718, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32203458

RESUMO

Superelasticity associated with the martensitic transformation has found a broad range of engineering applications1,2. However, the intrinsic hysteresis3 and temperature sensitivity4 of the first-order phase transformation significantly hinder the usage of smart metallic components in many critical areas. Here, we report a large superelasticity up to 15.2% strain in [001]-oriented NiCoFeGa single crystals, exhibiting non-hysteretic mechanical responses, a small temperature dependence and high-energy-storage capability and cyclic stability over a wide temperature and composition range. In situ synchrotron X-ray diffraction measurements show that the superelasticity is correlated with a stress-induced continuous variation of lattice parameter accompanied by structural fluctuation. Neutron diffraction and electron microscopy observations reveal an unprecedented microstructure consisting of atomic-level entanglement of ordered and disordered crystal structures, which can be manipulated to tune the superelasticity. The discovery of the large elasticity related to the entangled structure paves the way for exploiting elastic strain engineering and development of related functional materials.

20.
Nanotechnology ; 32(11): 115401, 2021 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-33285537

RESUMO

Ascribed to their higher capacity and lower cost compared to conventional LiCoO2, the Ni-rich layered LiNi0.6Mn0.2Co0.2O2 (NMC622) is now considered as one promising cathode for lithium-ion batteries (LIBs). However, it still suffers from some evident performance degradation, especially under high cutoff voltages (i.e., >4.3 V versus Li/Li+). The performance degradation typically is exhibited as capacity fading and voltage drop, mainly originating from an instable interface between the NMC622 and electrolyte as well as the evolution of the NMC structure. To improve the interfacial and structural stability of NMC cathodes, herein we deposited an ultrathin layer of Al2O3 coatings (<5 nm) conformally over NMC622 composite electrodes directly using atomic layer deposition (ALD). It was found that, under different upper cutoff voltages (4.3, 4.5, and 4.7 V), the ALD Al2O3 coatings enable enhanced performance of NMC622 cathodes with better cyclability and higher capacity. Particularly, the beneficial effects of the ALD Al2O3 coatings are more remarkable at higher upper cutoff voltages (4.5 and 4.7 V). Furthermore, the ALD coatings can significantly improve the rate capability of NMC622. To this end, we utilized a suite of characterization tools and performed a series of electrochemical tests to clarify the effects of the ALD Al2O3 coatings. This study revealed that the beneficial effects of the Al2O3 ALD coatings are multiple: (i) serving as an artificial layer of solid electrolyte interphase to mitigate undesirable interfacial reactions; (ii) acting as a physical barrier to inhibit metal dissolution of NMC; and (iii) forming a reinforced networked overcoating to boost the mechanical integrity of NMC cathodes. This study is favorable for designing high-performance NMC cathodes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA