Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 218
Filtrar
1.
J Proteome Res ; 23(6): 2100-2111, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38634357

RESUMO

Gut microbiota-derived microbial compounds may link to the pathogenesis of colorectal cancer (CRC). However, the role of the host-microbiome in the incidence and progression of CRC remains elusive. We performed 16S rRNA sequencing, metabolomics, and proteomic studies on samples from 85 CRC patients who underwent colonoscopy examination and found two distinct changed patterns of microbiome in CRC patients. The relative abundances of Catabacter and Mogibacterium continuously increased from intramucosal carcinoma to advanced stages, whereas Clostridium, Anaerostipes, Vibrio, Flavonifractor, Holdemanella, and Hungatella were significantly altered only in intermediate lesions. Fecal metabolomics analysis exhibited consistent increases in bile acids, indoles, and urobilin as well as a decrease in heme. Serum metabolomics uncovered the highest levels of bilin, glycerides, and nucleosides together with the lowest levels of bile acids and amino acids in the stage of intermediate lesions. Three fecal and one serum dipeptides were elevated in the intermediate lesions. Proteomics analysis of colorectal tissues showed that oxidation and autophagy through the PI3K/Akt-mTOR signaling pathway contribute to the development of CRC. Diagnostic analysis showed multiomics features have good predictive capability, with AUC greater than 0.85. Our overall findings revealed new candidate biomarkers for CRC, with potentially significant diagnostic and prognostic capabilities.


Assuntos
Neoplasias Colorretais , Fezes , Microbioma Gastrointestinal , Metabolômica , Proteômica , RNA Ribossômico 16S , Humanos , Neoplasias Colorretais/microbiologia , Neoplasias Colorretais/patologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Proteômica/métodos , Fezes/microbiologia , Fezes/química , Metabolômica/métodos , Masculino , RNA Ribossômico 16S/genética , Feminino , Pessoa de Meia-Idade , Idoso , Transdução de Sinais , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/sangue , Multiômica
2.
Small ; : e2304894, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38546002

RESUMO

Superhydrophobic fabrics with multiple functions have become a research hotspot. However, it is challenging to make self-healing mechanically robust and eco-friendly superhydrophobic fabrics, which are limited by complex fabrication processes and excessive use of environmentally unfriendly solvents during fabrication. Herein, inspired by the secretion of a waxy substance from the surface of lotus leaves to restore water repellency, self-healing superhydrophobic composite fabrics (as-synthesized PA66/6-PET@Tico) are obtained by constructing a papillary TiO2 and tentacle-like fluorinated acrylate polymer (FCB015) coating on polyester-nylon composite fabrics using two-step hydrothermal method. The result indicates that PA66/6-PET@Tico with hierarchical micro/nanostructure exhibits excellent superhydrophobic and self-healing properties. Compared with FCB015 coated fabric, the contact angles (CA) of water and soybean oil rise to 172.2° and 166.8° from 137.4° and 98.8°, respectively. After mechanical abrasion, PA66/6-PET@Tico recovers a water contact angle (WCA) of 165.6° at room temperature. The WCA remains higher than 155° after 18 h of chemical corrosion. Furthermore, the bacterial inhibition rates of PA66/6-PET@Tico for Staphylococcus Aureus and Escherichia Coli are 99.90 and 98.38%, respectively. In this work, a new idea is proposed for designing a simple and effective self-healing superhydrophobic coating, expecting to promote the large-scale industrial production and application of functional surfaces.

3.
Analyst ; 149(3): 751-760, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38194259

RESUMO

Polyunsaturated fatty acids (PUFAs), such as arachidonic acid (ARA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA), play an important role in the nutritional value of milk lipids. However, a comprehensive analysis of PUFAs and their esters in milk is still scarce. In this study, we developed a novel pseudotargeted lipidomics approach, named SpecLipIDA, for determining PUFA lipids in milk. Triglycerides (TGs) and phospholipids (PLs) were separated using NH2 cartridges, and mass spectrometry data in the information-dependent acquisition (IDA) mode were preprocessed by MS-DIAL, leading to improved identification in subsequent targeted analysis. The target matching algorithm, based on specific lipid cleavage patterns, demonstrated enhanced identification of PUFA lipids compared to the lipid annotations provided by MS-DIAL and GNPS. The approach was applied to identify PUFA lipids in various milk samples, resulting in the detection of a total of 115 PUFA lipids. The results revealed distinct differences in PUFA lipids among different samples, with 44 PUFA lipids significantly contributing to these differences. Our study indicated that SpecLipIDA is an efficient method for rapidly and specifically screening PUFA lipids.


Assuntos
Lipidômica , Leite , Animais , Ácidos Graxos Insaturados , Fosfolipídeos , Ácidos Docosa-Hexaenoicos , Ácidos Graxos
4.
Anal Bioanal Chem ; 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38772972

RESUMO

Branched fatty acid esters of hydroxy fatty acids (FAHFAs) represent trace lipids with significant natural biological functions. While exogenous FAHFAs have been extensively studied, research on FAHFAs in milk remains limited, constraining our grasp of their nutritional roles. This study introduces a non-targeted mass spectrometry approach combined with chemical networking of spectral fragmentation patterns to uncover FAHFAs. Through meticulous sample handling and comparisons of various data acquisition and processing modes, we validate the method's superiority, identifying twice as many FAHFAs compared to alternative techniques. This validated method was then applied to different milk samples, revealing 45 chemical signals associated with known and potential FAHFAs, alongside findings of 66 ceramide/hexosylceramide (Cer/HexCer), 48 phosphatidyl ethanolamine/lyso phosphatidyl ethanolamine (PE/LPE), 21 phosphatidylcholine/lysophosphatidylcholine (PC/LPC), 16 phosphatidylinositol (PI), 7 phosphatidylserine (PS), and 11 sphingomyelin (SM) compounds. This study expands our understanding of the FAHFA family in milk and provides a fast and convenient method for identifying FAHFAs.

5.
Compr Rev Food Sci Food Saf ; 23(3): e13332, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38578167

RESUMO

Antarctic krill oil (AKO) is highly sought after by consumers and the food industry due to its richness in a variety of nutrients and physiological activities. However, current extraction methods are not sufficient to better extract AKO and its nutrients, and AKO is susceptible to lipid oxidation during processing and storage, leading to nutrient loss and the formation of off-flavors and toxic compounds. The development of various extraction methods and encapsulation systems for AKO to improve oil yield, nutritional value, antioxidant capacity, and bioavailability has become a research hotspot. This review summarizes the research progress of AKO from extraction to encapsulation system construction. The AKO extraction mechanism, technical parameters, oil yield and composition of solvent extraction, aqueous enzymatic extraction, supercritical/subcritical extraction, and three-liquid-phase salting-out extraction system are described in detail. The principles, choice of emulsifier/wall materials, preparation methods, advantages and disadvantages of four common encapsulation systems for AKO, namely micro/nanoemulsions, microcapsules, liposomes and nanostructured lipid carriers, are summarized. These four encapsulation systems are characterized by high encapsulation efficiency, low production cost, high bioavailability and high antioxidant capacity. Depending on the unique advantages and conditions of different encapsulation methods, as well as consumer demand for health and nutrition, different products can be developed. However, existing AKO encapsulation systems lack relevant studies on digestive absorption and targeted release, and the single product category of commercially available products limits consumer choice. In conjunction with clinical studies of AKO encapsulation systems, the development of encapsulation systems for special populations should be a future research direction.


Assuntos
Antioxidantes , Euphausiacea , Animais , Estado Nutricional , Valor Nutritivo , Lipídeos
6.
Anal Chem ; 95(51): 18793-18802, 2023 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-38095040

RESUMO

Metabolomics and proteomics offer significant advantages in understanding biological mechanisms at two hierarchical levels. However, conventional single omics analysis faces challenges due to the high demand for specimens and the complexity of intrinsic associations. To obtain comprehensive and accurate system biological information, we developed a multiomics analytical method called Windows Scanning Multiomics (WSM). In this method, we performed simultaneous extraction of metabolites and proteins from the same sample, resulting in a 10% increase in the coverage of the identified biomolecules. Both metabolomics and proteomics analyses were conducted by using ultrahigh-performance liquid chromatography mass spectrometry (UPLC-MS), eliminating the need for instrument conversions. Additionally, we designed an R-based program (WSM.R) to integrate mathematical and biological correlations between metabolites and proteins into a correlation network. The network created from simultaneously extracted biomolecules was more focused and comprehensive compared to those from separate extractions. Notably, we excluded six pairs of false-positive relationships between metabolites and proteins in the network established using simultaneously extracted biomolecules. In conclusion, this study introduces a novel approach for multiomics analysis and data processing that greatly aids in bioinformation mining from multiomics results. This method is poised to play an indispensable role in systems biology research.


Assuntos
Multiômica , Proteômica , Proteômica/métodos , Cromatografia Líquida , Espectrometria de Massas em Tandem , Metabolômica/métodos
7.
Crit Rev Food Sci Nutr ; 63(10): 1406-1436, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-34387517

RESUMO

Owing to their promising application prospects, water-in-oil (W/O) emulsions have aroused continuous attention in recent years. However, long-term stability of W/O emulsions remains a particularly challenging problem in colloid science. With the increasing demand of consumers for natural, green, and healthy foods, the heavy reliance on chemically synthesized surfactants to achieve long-term stability has become the key technical defect restricting the application of W/O emulsions in food. To design and manufacture W/O emulsions with long-term stability and clean label, a comprehensive understanding of the fundamentals of the W/O emulsion system is required. This review aims to demystify the field of W/O emulsions and update its current research progress. We first provide a summary on the essential basic knowledge regarding the instability mechanisms, including physical and chemical instability in W/O emulsions. Then, the formulation of the W/O emulsion system is introduced, particularly focusing on the use of natural stabilizers. Besides, the characterization and application of W/O emulsions are also discussed. Finally, we propose promising research trends, including (1) developing W/O high internal phase emulsions (HIPEs) as fat mimetic and substitute, (2) promising formulation routine for long-term stable double emulsions, and (3) searching for novel plant-derived stabilizers of W/O emulsions.


Assuntos
Tensoativos , Água , Emulsões/química , Água/química , Tensoativos/química , Alimentos , Tamanho da Partícula
8.
Crit Rev Food Sci Nutr ; 63(11): 1564-1586, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-34407718

RESUMO

3D printing technology has been widely used in food processing with its advantages of customized food design, personalized nutrition design, and simplified food supply chain. Food emulsion gels have application value and prospects in food 3D printing due to their promising properties, including biodegradability, biocompatibility, as well as dual characteristics of emulsions and biopolymer gels. Food emulsion gels with appropriate mechanical properties, as a new type of food inks, expand the types and functions of the inks. However, food emulsion gels without adequate reinforced mechanical properties may suffer from defects in shape, texture, mouthfeel, and functionality during 3D printing and subsequent applications. Therefore, it is necessary to summarize the strategies to improve the mechanical properties of food emulsion gels. According to the methods of characterizing the mechanical properties of emulsion gels, this article summarizes four strategies for improving the mechanical properties of emulsion gels through two ways: inside-out (reinforcement of interface and reinforcement of cross-linking) and outside-in (physical approaches and environmental regulations), as well as their basic mechanisms. The application status and future research trends of emulsion gels in food 3D printing are finally discussed.


Assuntos
Alimentos , Impressão Tridimensional , Emulsões , Géis
9.
Crit Rev Food Sci Nutr ; : 1-20, 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37724529

RESUMO

Functional oil is type of oil that is beneficial to human health and has nutritional value, however, functional oils are rich in bioactive substances such as polyunsaturated fatty acids which are sensitive to environmental factors and are susceptible to oxidation or decomposition. Construction of emulsion-based oil powder is a promising approach for improving the stability and solubility of functional oils. However, the low effective loading of oil in powder is the main challenge limiting encapsulation technology. This manuscript focuses on reviewing the current research progress of emulsion-based functional oil powder construction and systematically summarizes the processing characteristics of emulsion-based oil powder with high payload and summarizing the strategies to enhance the payload of powder in term of emulsification and drying, respectively. The impact of emulsion formation on oil powder production is discussed from different characteristics of emulsions, including emulsion composition, emulsification methods and emulsion types. In addition, the current status of improving material loading performance by various modifications to the drying technology is discussed, including the addition of drying processing additives, changes in drying parameters and the effect of innovative technological means.

10.
Crit Rev Food Sci Nutr ; 63(27): 8478-8488, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35435783

RESUMO

Sensory evaluation is a key component of food production strategy. The classical food sensory evaluation method is time-consuming, laborious, costly, and highly subjective. Since flavor (taste and smell), texture, and mouthfeel are all related to the chemical properties of food, there has been a growing interest in how they affect the senses of food. In the past decades, emerging metabolomics has received much attention in the field of sensory evaluation, because it not only offers a broad picture of chemical composition for sensory properties but also revealed their changes and functions in food proceeding. This article reviewed food chemicals regarding the flavor, smell, and texture of foods, and discussed the advantages and limitations of applying metabolomics approaches to sensory evaluation, including GC-MS, LC-MS, and NMR. Taken together, this review gives a comprehensive, critical overview of the current state, future challenges, and trends in metabolomics on food sensory properties.


Assuntos
Olfato , Paladar , Sensação , Alimentos , Percepção Gustatória , Metabolômica
11.
Crit Rev Food Sci Nutr ; : 1-13, 2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37140184

RESUMO

As an emerging group of bioactive fatty acids, monomethyl branched-chain fatty acids (mmBCFAs) have sparked the interest of many researchers both domestically and internationally. In addition to documenting the importance of mmBCFAs for growth and development, there is increasing evidence that mmBCFAs are highly correlated with obesity and insulin resistance. According to previous pharmacological investigations, mmBCFAs also exhibit anti-inflammatory effects and anticancer properties. This review summarized the distribution of mmBCFAs, which are widely found in dairy products, ruminants, fish, and fermented foods. Besides, we discuss the biosynthesis pathway in different species and detection methods of mmBCFAs. With the hope to unveil their mechanisms of action, we recapitulated detailed the nutrition and health benefits of mmBCFAs. Furthermore, this study provides a thorough, critical overview of the current state of the art, upcoming difficulties, and trends in mmBCFAs.

12.
Molecules ; 28(5)2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36903257

RESUMO

Rapeseed polyphenols have cardiovascular protective effects. Sinapine, one main rapeseed polyphenol, possesses antioxidative, anti-inflammatory, and antitumor properties. However, no research has been published about the role of sinapine in alleviating macrophage foaming. This study aimed to reveal the macrophage foaming alleviation mechanism of sinapine by applying quantitative proteomics and bioinformatics analyses. A new approach was developed to retrieve sinapine from rapeseed meals by using hot-alcohol-reflux-assisted sonication combined with anti-solvent precipitation. The sinapine yield of the new approach was significantly higher than in traditional methods. Proteomics was performed to investigate the effects of sinapine on foam cells, and it showed that sinapine can alleviate foam cell formation. Moreover, sinapine suppressed CD36 expression, enhanced the CDC42 expression, and activated the JAK2 and the STAT3 in the foam cells. These findings suggest that the action of sinapine on foam cells inhibits cholesterol uptake, activates cholesterol efflux, and converts macrophages from pro-inflammatory M1 to anti-inflammatory M2. This study confirms the abundance of sinapine in rapeseed oil by-products and elucidates the biochemical mechanisms of sinapine that alleviates macrophage foaming, which may provide new perspectives for reprocessing rapeseed oil by-products.


Assuntos
Brassica napus , Brassica rapa , Óleo de Brassica napus/metabolismo , Proteômica , Macrófagos/metabolismo , Células Espumosas/metabolismo , Brassica napus/metabolismo , Brassica rapa/química , Anti-Inflamatórios/metabolismo , Colesterol/metabolismo , Lipoproteínas LDL/metabolismo
13.
Molecules ; 28(21)2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37959676

RESUMO

Hepatic steatosis can cause liver dysfunction and cell injury, on which natural functional factors are expected to be an effective approach for long-term intervention. However, the cellular molecular mechanisms are unclear. Chlorogenic acid is a phenolic compound, which can regulate lipid metabolism and is abundant in burdock root. The aim of this study was to investigate the potential molecular mechanism of the effect of chlorogenic acid from burdock root (ACQA) on steatosis in HepG2 cells. In this study, we found that ACQA reduced the number of lipid droplets and lipid levels in oleic acid-treated HepG2 cells. Molecular mechanistic results showed that ACQA enhanced CPT-1 expression by activating AMPK-related signaling pathways, and the concentrations of Ca2+ and cAMP were increased with the intervention of ACQA. In addition, ACQA enhanced the ß-oxidation of fatty acids, reduced alanine transaminase and aspartate transaminase, and inhibited apoptosis in oleic acid-treated HepG2 cells. Our studies elucidate a novel mechanism that ACQA enhances the ß-oxidation of fatty acids through the AMPK/ACC/CPT-1 pathway to protect against steatosis in HepG2 cells, which provides insight into its molecular mechanism as well as intervention strategies for chlorogenic acid against fatty liver diseases.


Assuntos
Arctium , Hepatopatia Gordurosa não Alcoólica , Humanos , Células Hep G2 , Proteínas Quinases Ativadas por AMP/metabolismo , Ácido Clorogênico/farmacologia , Ácido Clorogênico/metabolismo , Ácido Oleico/farmacologia , Hepatopatia Gordurosa não Alcoólica/induzido quimicamente , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Metabolismo dos Lipídeos , Ácidos Graxos/metabolismo , Fígado
14.
J Sci Food Agric ; 103(12): 5893-5903, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37144349

RESUMO

BACKGROUND: The digestion behavior of lipids plays a crucial role in their nutritional values. Currently, the complex dynamic variations of human gastrointestinal conditions are considered in simulated digestion models. The present study compared the digestion behavior of glycerol trilaurate (GTL), glycerol tripalmitate (GTP) and glycerol tristearate (GTS) in a static in vitro digestion model and a dynamic in vitro digestion model. In the dynamic digestion model, the parameters of gastric juice secretion, the rate of gastric emptying, the secretion of intestinal juice and the pH variations were estimated. RESULTS: The dynamic digestion model showed a certain extent of gastric lipase hydrolysis, while almost no lipolysis happened in the gastric phase of the static digestion model. A smoother digestive behavior was observed in the dynamic model than that in the static model. In the static model, the particle size distribution in gastric and intestinal phase changed rapidly in all triacylglycerol (TAG) groups. The change of particle size during the whole digestion period in GTL is more moderate than GTP and GTS. In addition, the final free fatty acids release degree was 58.558%, 54.36%, and 52.97% for GTL, GTP, and GTS, respectively. CONCLUSION: This study illustrated the different digestion profiles of TAGs in two digestion models and the results will contribute to a better understanding of different in vitro digestion models in lipid digestion. © 2023 Society of Chemical Industry.


Assuntos
Glicerol , Estômago , Humanos , Digestão , Guanosina Trifosfato , Lipólise , Modelos Biológicos
15.
Crit Rev Food Sci Nutr ; 62(29): 8137-8160, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33998841

RESUMO

Lipid oxidation largely determines the quality of emulsion systems as well as their final products. Therefore, an increasing number of studies have focused on the control of lipid oxidation, particularly on its mechanism. In this review, we discuss the factors affecting the efficiency of antioxidants in emulsion systems, such as the free radical scavenging ability, specifically emphasizing on the interfacial behavior and the influence of surfactants on the interfacial distribution of antioxidants. To enhance the antioxidant efficiency of antioxidants in emulsion systems, we discussed whether the combination of antioxidants and proteins can improve antioxidant effects. The types, mixing applications, structures, interface behaviors, effects of surfactants on interfacial proteins, and the location of proteins are associated with the antioxidant effects of proteins in emulsion systems. Antioxidants and proteins can be combined in both covalent and non-covalent ways. The fabrication conditions, conjugation methods, interface behaviors, and characterization methods of these two combinations are also discussed. Our review provides useful information to guide better strategies for providing stability and controlling lipid oxidation in emulsions. The main challenges and future trends in controlling lipid oxidation in complex emulsion systems are also discussed.


Assuntos
Antioxidantes , Tensoativos , Antioxidantes/química , Emulsões/química , Radicais Livres , Lipídeos , Oxirredução , Tensoativos/química , Água/química
16.
Crit Rev Food Sci Nutr ; : 1-9, 2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36069291

RESUMO

Objective: Fasting is considered to be a food structure that can improve body health. Several randomized clinical trials (RCTs) have investigated the effects of fasting in patients with metabolic syndrome (MS). In this review, we performed a meta-analysis to assess the effects of fasting on patients with MS. Methods: Following PRISMA guidelines, a systematic literature search was conducted in PubMed, Embase, and Cochrane Central updated to September 2021. The quality evaluation and heterogeneity detection of the included research literature were carried out by Revman and Stata software through a random-effects model. Results: A total of 268 subjects were included. The pooled results revealed that fasting significantly reduced body weight (WMD: -2.48 kg, 95% CI: -3.22, -1.74), BMI (WMD = -2.72 cm; 95%CI: -4.04, -1.40 cm), body fat percent (WMD: -1.57%, 95%CI: -2.47, -0.68), insulin level (WMD: -2.45 mmol/L; 95%CI: -4.40, -0.49 mmol/L) and HOMA-IR (WMD:-0.65 mmol/L; 95%CI: -0.90, -0.41 mmol/L) in patients with MS, whereas had no effect on glucose, blood pressure and lipids profile. Conclusions: Our findings provide insights into the effect of fasting on the anthropometric outcomes, insulin resistance, and gut microbiota in MS.

17.
J Environ Manage ; 318: 115643, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35949092

RESUMO

Aiming at the synchronous elimination of heavy metals and organic contaminants from wastewater, the amidoxime functionalized PVDF-based chelating membrane was fabricated in this study. The structure and morphology of the chelating membrane were characterized using infrared spectroscopy (FT-IR), nuclear magnetic resonance spectrometer (NMR) and scanning electron microscopy (SEM). The SEM results show that the chemical modification with amidoxime groups did not damage the structure of the PVDF-based membrane. The chelating membrane has a high removal efficiency for Cu2+ (77.33%) and Pb2+ (79.23%) owing to the chemisorption through coordination bonds. However, the chelating membrane exhibits a low removal efficiency for Cd2+ (29.88%) due to the physical adsorption. The chelating membrane has a high rejection efficiency of BSA (95.17%) and lysozyme (70.09%), which is attributed to the sieving effect and increased hydrophobicity. Furthermore, the membrane performance for simultaneously removing metals and proteins from simulated wastewater was examined. The interaction of metal ions with proteins (BSA and lysozyme) can enhance the ion removal efficiency of the chelated membrane, but decrease the protein rejection efficiency due to the destructive effect. The amidoxime functionalized PVDF-based chelating membrane has a high potential for application in wastewater treatment.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Adsorção , Quelantes/química , Polímeros de Fluorcarboneto , Íons , Metais Pesados/química , Muramidase , Oximas , Polivinil , Espectroscopia de Infravermelho com Transformada de Fourier , Águas Residuárias/química , Poluentes Químicos da Água/química
18.
Molecules ; 27(19)2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36234684

RESUMO

Contamination of agricultural products and foods by aflatoxin B1 (AFB1) is becoming a serious global problem, and the presence of AFB1 in edible oil is frequent and has become inevitable, especially in underdeveloped countries and regions. As AFB1 results from a possible degradation of aflatoxins and the interaction of the resulting toxic compound with food components, it could cause chronic disease or severe cancers, increasing morbidity and mortality. Therefore, rapid and reliable detection methods are essential for checking AFB1 occurrence in foodstuffs to ensure food safety. Recently, new biosensor technologies have become a research hotspot due to their characteristics of speed and accuracy. This review describes various technologies such as chromatographic and spectroscopic techniques, ELISA techniques, and biosensing techniques, along with their advantages and weaknesses, for AFB1 control in edible oil and provides new insight into AFB1 detection for future work. Although compared with other technologies, biosensor technology involves the cross integration of multiple technologies, such as spectral technology and new nano materials, and has great potential, some challenges regarding their stability, cost, etc., need further studies.


Assuntos
Aflatoxinas , Técnicas Biossensoriais , Aflatoxina B1 , Aflatoxinas/análise , Técnicas Biossensoriais/métodos , Contaminação de Alimentos/análise , Inocuidade dos Alimentos
19.
Molecules ; 27(24)2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36558086

RESUMO

Interest in oleogel as a promising alternative to traditional hydrogenated vegetable oil has increasingly grown in recent years due to its low content of saturated fatty acids and zero trans fatty acids. This study aimed to develop wax-based margarine to replace traditional commercial margarine. The wax-based margarine was prepared and compared with commercial margarine in texture, rheology, and microscopic morphology. The possibility of preparing margarine at room temperature (non-quenched) was also explored. The results showed that the hardness of oleogel-based margarine increased as the BW concentration increased. Denser droplets and crystal network structure were observed with the increase in BW content. XRD patterns of oleogel-based margarine with different content BW were quite similar and structurally to the ß' form. However, the melting temperature of oleogel-based margarine was over 40 °C at each concentration, which represented a poor mouth-melting characteristic. In addition, the unique, improved physical properties of oleogel-based margarine were obtained with binary mixtures of China lacquer wax (ZLW) and Beeswax (BW), due to the interaction of the ZLW and BW crystal network. The rapid cooling process improved the spreadability of oleogel-based margarine. The margarine prepared by 5% BW50:ZLW50 had similar properties to commercial margarine in texture and melting characteristics (37 °C), which had the potential to replace commercial margarine.


Assuntos
Manipulação de Alimentos , Margarina , Cristalização , Margarina/análise , Manipulação de Alimentos/métodos , Compostos Orgânicos/química
20.
Molecules ; 27(21)2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36364301

RESUMO

The aim of the present study was to determine the major anthocyanins of blueberry extracts from northeast China and explore their vision health improvement effects. HPLC-Q-TOF-MS/MS results suggested that six different anthocyanins were accurately identified, among which the Cy-3-glu (C3G) was the most abundant, ranging from 376.91 ± 7.91 to 763.70 ± 4.99 µM. The blueberry extract contained a higher purity of anthocyanins, and the anthocyanosides reached 342.98 mg/kg. The anti-oxidative stress function of C3G on HG-treated ARPE-19 cells were evaluated, and showed that the GSSG level of HG-cells pretreated with 10 µM C3G was significantly decreased, while the Nrf2 and NQO1 gene expression levels were increased. Further molecular docking (MD) results indicated that the C3G displayed favorable binding affinity towards REDD1, and only the B-ring of the C3G molecule displayed binding interactions with the CYS-140 amino acids within the REDD1 protein. It implied that the oxidative stress amelioration effects of C3G on the ARPE-19 cells were related to the REDD1 protein, which was probably via the Nrf2 pathways, although further studies are needed to provide mechanism evidence. The present study provides novel insights into understanding the roles of blueberry anthocyanins in ameliorating oxidative stress-induced BRB damage in the retina.


Assuntos
Mirtilos Azuis (Planta) , Diabetes Mellitus , Retinopatia Diabética , Antocianinas/farmacologia , Mirtilos Azuis (Planta)/química , Fator 2 Relacionado a NF-E2/metabolismo , Glucosídeos/farmacologia , Simulação de Acoplamento Molecular , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA