Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
1.
Anal Chem ; 96(5): 2253-2263, 2024 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-38277203

RESUMO

Current study in the heterogeneity and physiological behavior of tumor cells is limited by the fluorescence in situ hybridization technology in terms of probe assembly efficiency, background suppression capability, and target compatibility. In a typically well-designed assay, hybridization probes are constructed in a confined nanostructure to achieve a rapid assembly for efficient signal response, while the excessively high local concentration between different probes inevitably leads to nonspecific background leakage. Inspired by the fabric zipper, we propose a novel confinement reaction pattern in a zipper-confined DNA nanoframe (ZCDN), where two kinds of hairpin probes are independently anchored respective tracks. The metastable states of the dual tracks can well avoid signal leakage caused by the nonspecific probe configuration change. Biomarker-mediated proximity ligation reduces the local distance of dual tracks, kinetically triggering an efficient allosteric chain reaction between the hairpin probes. This method circumvents nonspecific background leakage while maintaining a high efficiency in responding to targets. ZCDN is employed to track different cancer biomarkers located in both the cytoplasm and cytomembrane, of which the expression level and oligomerization behavior can provide crucial information regarding intratumoral heterogeneity. ZCDN exhibits high target response efficiency and strong background suppression capabilities and is compatible with various types of biological targets, thus providing a desirable tool for advanced molecular diagnostics.


Assuntos
Técnicas Biossensoriais , Nanoestruturas , Hibridização in Situ Fluorescente , DNA/química , Diagnóstico por Imagem , Nanoestruturas/química , Sondas de DNA/genética , Sondas de DNA/química , Técnicas Biossensoriais/métodos
2.
J Transl Med ; 22(1): 580, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38898490

RESUMO

The importance of the immune microenvironment in poorly cohesive carcinoma (PCC) has been highlighted due to its limited response rate to conventional therapy and emerging treatment resistance. A combination of clinical cohorts, bioinformatics analyses, and functional/molecular experiments revealed that high infiltration of Interferon Induced Protein with Tetratricopeptide Repeats 1 (IFIT1) + tumor-associated neutrophils (TANs) is a distinguishing feature of PCC patients. Upregulation of IFIT1 + TANs promote migration and invasion of gastric cancer (GC) cell lines (MKN45 and MKN74) and stimulates the growth of cell-derived xenograft models. Besides, by promoting macrophage secreted phosphoprotein 1 (SPP1) expression and facilitating cancer-associated fibroblast and endothelial cell recruitment and activation through TANs, IFIT1 promotes a mesenchymal phenotype, which is associated with a poor prognosis. Importantly, compared to non-PCC (NPCC), PCC tumors is more immunosuppressive. Mechanistically, IFIT1 can be stimulated by IFN-γ and contributes to the expression of Programmed Cell Death 1 Ligand (PDL1) in TANs. We demonstrated in mouse models that IFIT1 + PDL1 + TANs can induce acquired resistance to anti-PD-1 immunotherapy, which may be responsible for the difficulty of PCC patients to benefit from immunotherapy. This work highlights the role of IFIT1 + TANs in mediating the remodeling of the tumor immune microenvironment and immunotherapeutic resistance and introduces IFIT1 + TANs as a promising target for precision therapy of PCC.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Neutrófilos , Proteínas de Ligação a RNA , Humanos , Neutrófilos/imunologia , Neutrófilos/metabolismo , Animais , Proteínas de Ligação a RNA/metabolismo , Linhagem Celular Tumoral , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Microambiente Tumoral/imunologia , Feminino , Antígeno B7-H1/metabolismo , Neoplasias Gástricas/patologia , Neoplasias Gástricas/imunologia , Masculino , Camundongos , Resistencia a Medicamentos Antineoplásicos , Movimento Celular , Tolerância Imunológica , Terapia de Imunossupressão , Regulação Neoplásica da Expressão Gênica , Invasividade Neoplásica , Camundongos Nus , Imunoterapia , Pessoa de Meia-Idade
3.
J Transl Med ; 22(1): 549, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849852

RESUMO

Cellular communication (CC) influences tumor development by mediating intercellular junctions between cells. However, the role and underlying mechanisms of CC in malignant transformation remain unknown. Here, we investigated the spatiotemporal heterogeneity of CC molecular expression during malignant transformation. It was found that although both tight junctions (TJs) and gap junctions (GJs) were involved in maintaining the tumor microenvironment (TME), they exhibited opposite characteristics. Mechanistically, for epithelial cells (parenchymal component), the expression of TJ molecules consistently decreased during normal-cancer transformation and is a potential oncogenic factor. For fibroblasts (mesenchymal component), the expression of GJs consistently increased during normal-cancer transformation and is a potential oncogenic factor. In addition, the molecular profiles of TJs and GJs were used to stratify colorectal cancer (CRC) patients, where subtypes characterized by high GJ levels and low TJ levels exhibited enhanced mesenchymal signals. Importantly, we propose that leiomodin 1 (LMOD1) is biphasic, with features of both TJs and GJs. LMOD1 not only promotes the activation of cancer-associated fibroblasts (CAFs) but also inhibits the Epithelial-mesenchymal transition (EMT) program in cancer cells. In conclusion, these findings demonstrate the molecular heterogeneity of CC and provide new insights into further understanding of TME heterogeneity.


Assuntos
Fibroblastos Associados a Câncer , Comunicação Celular , Neoplasias Colorretais , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Microambiente Tumoral , Animais , Humanos , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/patologia , Linhagem Celular Tumoral , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/genética , Transição Epitelial-Mesenquimal/genética , Junções Comunicantes/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Análise Espaço-Temporal , Junções Íntimas/metabolismo , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Autoantígenos/genética , Autoantígenos/metabolismo
4.
PLoS Pathog ; 18(6): e1010576, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35679251

RESUMO

Hepatitis B virus (HBV) covalently closed circular DNA (cccDNA), serving as the viral persistence form and transcription template of HBV infection, hijacks host histone and non-histone proteins to form a minichromosome and utilizes posttranslational modifications (PTMs) "histone code" for its transcriptional regulation. HBV X protein (HBx) is known as a cccDNA transcription activator. In this study we established a dual system of the inducible reporter cell lines modelling infection with wildtype (wt) and HBx-null HBV, both secreting HA-tagged HBeAg as a semi-quantitative marker for cccDNA transcription. The cccDNA-bound histone PTM profiling of wt and HBx-null systems, using chromatin immunoprecipitation coupled with quantitative PCR (ChIP-qPCR), confirmed that HBx is essential for maintenance of cccDNA at transcriptionally active state, characterized by active histone PTM markers. Differential proteomics analysis of cccDNA minichromosome established in wt and HBx-null HBV cell lines revealed group-specific hits. One of the hits in HBx-deficient condition was a non-histone host DNA-binding protein high mobility group box 1 (HMGB1). Its elevated association to HBx-null cccDNA was validated by ChIP-qPCR assay in both the HBV stable cell lines and infection systems in vitro. Furthermore, experimental downregulation of HMGB1 in HBx-null HBV inducible and infection models resulted in transcriptional re-activation of the cccDNA minichromosome, accompanied by a switch of the cccDNA-associated histones to euchromatic state with activating histone PTMs landscape and subsequent upregulation of cccDNA transcription. Mechanistically, HBx interacts with HMGB1 and prevents its binding to cccDNA without affecting the steady state level of HMGB1. Taken together, our results suggest that HMGB1 is a novel host restriction factor of HBV cccDNA with epigenetic silencing mechanism, which can be counteracted by viral transcription activator HBx.


Assuntos
Proteína HMGB1 , Hepatite B , DNA Circular/genética , DNA Circular/metabolismo , DNA Viral/genética , DNA Viral/metabolismo , Epigênese Genética , Proteína HMGB1/genética , Células Hep G2 , Vírus da Hepatite B/metabolismo , Histonas/metabolismo , Humanos , Transativadores , Fatores de Transcrição/metabolismo , Proteínas Virais Reguladoras e Acessórias , Replicação Viral/genética
5.
J Med Virol ; 96(2): e29485, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38377167

RESUMO

Emerging evidence supports a high prevalence of cancer type-specific microbiota residing within tumor tissues. The intratumoral microbiome in hepatocellular carcinoma (HCC), especially in viral (hepatitis B virus [HBV]/hepatitis C virus [HCV]) HCC, has not been well characterized for their existence, composition, distribution, and biological functions. We report herein a finding of specific microbial signature in viral HCC as compared to non-HBV/non-HCV (NBNC) HCC. However, the significantly diverse tumor microbiome was only observed in HBV-related HCC, and Cutibacterium was identified as the representative taxa biomarker. Biological function of the unique tumor microbiota in modulating tumor microenvironment (TME) was characterized by using formalin-fixed paraffin-embedded (FFPE) tissue-based multiplex immunofluorescence histochemistry (mIFH) allowing simultaneous in situ detection of the liver cancer cells surrounded with high/low density of microbiota, and the infiltrating immune cells. In HBV_HCC, the intratumoral microbiota are positively associated with increased tumor-infiltrating CD8+ T lymphocytes, but not the CD56+ NK cells. Two subtypes of myeloid-derived suppressor cells (MDSCs): monocytic MDSCs and polymorphonuclear MDSCs, were also found to be positively correlated with the intratumoral microbiota in HBV_HCC, indicating an inhibitory role of these microbial species in antitumor immunity and the contribution to the liver TME in combination of chronic viral hepatitis during HCC development.


Assuntos
Carcinoma Hepatocelular , Hepatite B , Hepatite C , Neoplasias Hepáticas , Humanos , Vírus da Hepatite B , Hepatite C/complicações , Hepatite B/complicações , Hepatite B/patologia , Microambiente Tumoral
6.
Pharmacol Res ; 188: 106644, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36603607

RESUMO

poorly cohesive (PC) gastric cancer (GC) (PC-GC) is a distinct histological subtype of GC and is defined as a tumor consisting of isolated or small clusters of tumor cells with poorly differentiated and metastatic characteristics. According to multiple studies, PC-GC is intrinsically heterogeneous, with mesenchymal variants being the most aggressive. However, to date, the molecular mechanisms associated with PC-GC are still not fully understood. This study investigated the role of the USP51/ZEB1/ACTA2 axis in promoting GC metastasis. Single-cell sequencing revealed that E-box binding homeobox 1 (ZEB1) expression was significantly increased in a subpopulation of low-adherent cells and was an independent prognostic factor in GC patients. Furthermore, the bulk transcriptome analysis revealed a significant positive correlation between Ubiquitin Specific Peptidase 51 (USP51), ZEB1, and Actin Alpha 2 (ACTA2), and our data further confirmed that all three were highly co-localized in PC-GC tissues. According to the findings of in vitro and in vivo experiments, USP51 was able to maintain ZEB1 expression to promote ACTA2 transcription, thereby activating the mesenchymal phenotype of GC cells and promoting tumor metastasis. Moreover, USP51 could recruit and activate stromal cells, including M2-like macrophages and fibroblasts, through cancer cells. Clinical data suggested that overexpression of USP51 predicts that patients have difficulty benefiting from immunotherapy and is associated with immune-exclusion tumor characteristics. Collectively, the findings of this study shed light on a key mechanism by which elevated USP51 expression induces Epithelial-mesenchymal transition (EMT) in GC cells, hence facilitating GC cell proliferation, survival, and dissemination. In this view, USP51/ZEB1/ACTA2 may serve as a candidate therapeutic target against GC metastasis.


Assuntos
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/patologia , Actinas/metabolismo , Linhagem Celular Tumoral , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo , Proliferação de Células/genética , Movimento Celular/genética , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Proteases Específicas de Ubiquitina/genética , Proteases Específicas de Ubiquitina/metabolismo
7.
Genes Dev ; 29(6): 603-16, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25762439

RESUMO

Basic helix-loop-helix (bHLH) transcription factors recognize the canonical E-box (CANNTG) to regulate gene transcription; however, given the prevalence of E-boxes in a genome, it has been puzzling how individual bHLH proteins selectively recognize E-box sequences on their targets. TWIST is a bHLH transcription factor that promotes epithelial-mesenchymal transition (EMT) during development and tumor metastasis. High-resolution mapping of TWIST occupancy in human and Drosophila genomes reveals that TWIST, but not other bHLH proteins, recognizes a unique double E-box motif with two E-boxes spaced preferentially by 5 nucleotides. Using molecular modeling and binding kinetic analyses, we found that the strict spatial configuration in the double E-box motif aligns two TWIST-E47 dimers on the same face of DNA, thus providing a high-affinity site for a highly stable intramolecular tetramer. Biochemical analyses showed that the WR domain of TWIST dimerizes to mediate tetramer formation, which is functionally required for TWIST-induced EMT. These results uncover a novel mechanism for a bHLH transcription factor to recognize a unique spatial configuration of E-boxes to achieve target specificity. The WR-WR domain interaction uncovered here sets an example of target gene specificity of a bHLH protein being controlled allosterically by a domain outside of the bHLH region.


Assuntos
Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Modelos Moleculares , Proteína 1 Relacionada a Twist/química , Proteína 1 Relacionada a Twist/metabolismo , Sequência de Aminoácidos , Animais , Evolução Biológica , Sequência Conservada , Drosophila/química , Drosophila/metabolismo , Regulação da Expressão Gênica , Humanos , Ligação Proteica , Estabilidade Proteica , Estrutura Terciária de Proteína , Especificidade por Substrato
8.
Chin J Traumatol ; 26(3): 183-186, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36641320

RESUMO

For the treatment of an intertrochanteric fracture combined with femoral head necrosis in middle-age patients, it has been controversial whether to perform fracture reduction and fixation first then total hip replacement, or direct total hip replacement. We present a rare case of 53-year-old male patient suffered from bilateral intertrochanteric fracture caused by a road traffic injury. The patient had a history of femoral head necrosis for eight years, and the Harris score was 30. We performed total hip replacement with prolonged biologic shank prostheses for primary repair. One year after the surgery, nearly full range of motion was achieved without instability (active flexion angle of 110°, extension angle of 20°, adduction angle of 40°, abduction angle of 40°, internal rotation angle of 25°, and external rotation angle of 40°). The Harris score was 85. For the middle-aged patient with unstable intertrochanteric fractures and osteonecrosis of the femoral head, we can choose primary repair for concurrent bilateral intertrochanteric fracture and femoral head necrosis with prolonged shank biologic total hip replacement.


Assuntos
Artroplastia de Quadril , Produtos Biológicos , Necrose da Cabeça do Fêmur , Fraturas do Quadril , Masculino , Pessoa de Meia-Idade , Humanos , Artroplastia de Quadril/métodos , Cabeça do Fêmur/cirurgia , Necrose da Cabeça do Fêmur/etiologia , Necrose da Cabeça do Fêmur/cirurgia , Fixação Interna de Fraturas/métodos , Fraturas do Quadril/cirurgia , Resultado do Tratamento , Estudos Retrospectivos
9.
J Virol ; 95(19): e0044421, 2021 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-34287051

RESUMO

DDX17 is a member of the DEAD-box helicase family proteins involved in cellular RNA folding, splicing, and translation. It has been reported that DDX17 serves as a cofactor of host zinc finger antiviral protein (ZAP)-mediated retroviral RNA degradation and exerts direct antiviral function against Raft Valley fever virus through binding to specific stem-loop structures of viral RNA. Intriguingly, we have previously shown that ZAP inhibits hepatitis B virus (HBV) replication through promoting viral RNA decay, and the ZAP-responsive element (ZRE) of HBV pregenomic RNA (pgRNA) contains a stem-loop structure, specifically epsilon, which serves as the packaging signal for pgRNA encapsidation. In this study, we demonstrated that the endogenous DDX17 is constitutively expressed in human hepatocyte-derived cells but dispensable for ZAP-mediated HBV RNA degradation. However, DDX17 was found to inhibit HBV replication primarily by reducing the level of cytoplasmic encapsidated pgRNA in a helicase-dependent manner. Immunofluorescence assay revealed that DDX17 could gain access to cytoplasm from nucleus in the presence of HBV RNA. In addition, RNA immunoprecipitation and electrophoretic mobility shift assays demonstrated that the enzymatically active DDX17 competes with HBV polymerase to bind to pgRNA at the 5' epsilon motif. In summary, our study suggests that DDX17 serves as an intrinsic host restriction factor against HBV through interfering with pgRNA encapsidation. IMPORTANCE Hepatitis B virus (HBV) chronic infection, a long-studied but yet incurable disease, remains a major public health concern worldwide. Given that HBV replication cycle highly depends on host factors, deepening our understanding of the host-virus interaction is thus of great significance in the journey of finding a cure. In eukaryotic cells, RNA helicases of the DEAD box family are highly conserved enzymes involved in diverse processes of cellular RNA metabolism. Emerging data have shown that DDX17, a typical member of the DEAD box family, functions as an antiviral factor through interacting with viral RNA. In this study, we, for the first time, demonstrate that DDX17 inhibits HBV through blocking the formation of viral replication complex, which not only broadens the antiviral spectrum of DDX17 but also provides new insight into the molecular mechanism of DDX17-mediated virus-host interaction.


Assuntos
Capsídeo/metabolismo , RNA Helicases DEAD-box/metabolismo , Vírus da Hepatite B/fisiologia , RNA Viral/metabolismo , Replicação Viral , Linhagem Celular , Linhagem Celular Tumoral , Citoplasma/metabolismo , RNA Helicases DEAD-box/química , Produtos do Gene pol/metabolismo , Vírus da Hepatite B/genética , Humanos , Conformação de Ácido Nucleico , Domínios Proteicos , Estabilidade de RNA , RNA Viral/química , RNA Viral/genética , Proteínas de Ligação a RNA/metabolismo
10.
Cell Mol Biol Lett ; 27(1): 76, 2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-36064310

RESUMO

BACKGROUND: Current evidence suggests that the hypoxic tumor microenvironment further aggravates tumor progression, leading to poor therapeutic outcomes. There is as yet no biomarker capable of evaluating the hypoxic state of the tumor. The cytochrome c oxidase (COX) subunit is crucial to the mitochondrial respiratory chain. METHODS: We investigated the potential oncogenic role of COX subunit 4 isoform 2 gene (COX4I2) in colorectal cancer (CRC) by least absolute shrinkage and selection operator (LASSO) and COX regression analysis to examine whether COX4I2 overexpression can predict colorectal cancer (CRC) prognosis. The association of COX4I2 levels with clinical features and its biological actions were evaluated both in vitro and in vivo. RESULTS: Our analysis showed that elevated COX4I2 levels were correlated with poor clinical outcomes. We also observed that that COX4I2 may be involved in epithelial-mesenchymal transition, activation of cancer-related fibroblasts and angiogenesis in relation to fibroblast growth factor 1. CONCLUSIONS: The COX4I2 level may be a predictor of outcome in CRC and may represent a novel target for treatment development.


Assuntos
Neoplasias Colorretais , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Fator 1 de Crescimento de Fibroblastos , Neoplasias Colorretais/patologia , Transição Epitelial-Mesenquimal/genética , Humanos , Hipóxia/genética , Neovascularização Patológica , Microambiente Tumoral/genética
11.
Anal Chem ; 93(26): 9013-9022, 2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34160193

RESUMO

Bioaerosols containing pathogenic microorganisms have posed a great threat to human and animal health. Effective monitoring of bioaerosols containing pathogenic viruses and bacteria is of great significance to prevent and control infectious diseases. This Feature summarizes recent advances on bioaerosol collection and detection based on microfluidic chips. Besides, the challenges and trends for bioaerosol collection and detection were also discussed.


Assuntos
Microbiologia do Ar , Microfluídica , Aerossóis/análise , Animais , Bactérias , Monitoramento Ambiental , Humanos
12.
Analyst ; 146(14): 4622-4629, 2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34164637

RESUMO

An enzyme assay based method in a microfluidic slipchip was proposed for the rapid and label-free detection of E. coli. The specific target analyte of E. coli was ß-d-glucuronidase (GUS) which could catalyze the substrate 6-chloro-4-methyl-umbelliferyl-ß-d-glucuronide (6-CMUG) to release the fluorescent molecule 6-chloro-4-methyl-umbelliferyl (6-CMU). E. coli culture, lysis and enzymatic reaction steps could be conducted in a microfluidic slipchip without any pumps and valves, which was tailored for fluorescence detection using a commercial plate reader, to achieve a rapid E. coli test. A mixture of the culture broth, enzyme inducer and E. coli was injected into the chambers on the top layer. A mixture of the substrate and lysis solution was injected into the chambers on the bottom layer. Then, the slipchip was slid to make each chamber independent. E. coli was cultured in the chamber in the LB broth for 2.5 h. After that, the slipchip was slid again to introduce the lysis solution into the culture solution for GUS release and enzyme reaction, and then incubated in the plate reader at 42 °C for another 2.5 h. During incubation, the fluorescence intensity of each chamber was recorded. This proposed label-free method can directly detect E. coli with a low concentration of 8 CFU per chamber within 5 h, thus showing great potential in on-site E. coli detection.


Assuntos
Escherichia coli , Microfluídica , Bioensaio , Ensaios Enzimáticos , Glucuronidase
13.
Sens Actuators B Chem ; 343: 130139, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34035562

RESUMO

Owing to the over-increasing demands in resisting and managing the coronavirus disease 2019 (COVID-19) pandemic, development of rapid, highly sensitive, accurate, and versatile tools for monitoring total antibody concentrations at the population level has been evolved as an urgent challenge on measuring the fatality rate, tracking the changes in incidence and prevalence, comprehending medical sequelae after recovery, as well as characterizing seroprevalence and vaccine coverage. To this end, herein we prepared highly luminescent quantum dot nanobeads (QBs) by embedding numerous quantum dots into polymer matrix, and then applied it as a signal-amplification label in lateral flow immunoassay (LFIA). After covalently linkage with the expressed recombinant SARS-CoV-2 spike protein (RSSP), the synthesized QBs were used to determine the total antibody levels in sera by virtue of a double-antigen sandwich immunoassay. Under the developed condition, the QB-LFIA can allow the rapid detection of SARS-CoV-2 total antibodies within 15 min with about one order of magnitude improvement in analytical sensitivity compared to conventional gold nanoparticle-based LFIA. In addition, the developed QB-LFIA performed well in clinical study in dynamic monitoring of serum antibody levels in the whole course of SARS-CoV-2 infection. In conclusion, we successfully developed a promising fluorescent immunological sensing tool for characterizing the host immune response to SARS-CoV-2 infection and confirming the acquired immunity to COVID-19 by evaluating the SRAS-CoV-2 total antibody level in the crowd.

14.
J Virol ; 93(13)2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31019054

RESUMO

Antagonism of host immune defenses against hepatitis B virus (HBV) infection by the viral proteins is speculated to cause HBV persistence and the development of chronic hepatitis. The circulating hepatitis B e antigen (HBeAg, p17) is known to manipulate host immune responses to assist in the establishment of persistent viral infection, and HBeAg-positive (HBeAg+) patients respond less effectively to IFN-α therapy than do HBeAg-negative (HBeAg-) patients in clinical practice. However, the function(s) of the intracellular form of HBeAg, previously reported as the precore protein intermediate (p22) without the N-terminal signal peptide, remains elusive. Here, we report that the cytosolic p22 protein, but not the secreted HBeAg, significantly reduces interferon-stimulated response element (ISRE) activity and the expression of interferon-stimulated genes (ISGs) upon alpha interferon (IFN-α) stimulation in cell cultures. In line with this, HBeAg+ patients exhibit weaker induction of ISGs in their livers than do HBeAg- patients upon IFN-α therapy. Mechanistically, while p22 does not alter the total STAT1 or pSTAT1 levels in cells treated with IFN-α, it blocks the nuclear translocation of pSTAT1 by interacting with the nuclear transport factor karyopherin α1 through its C-terminal arginine-rich domain. In summary, our study suggests that HBV precore protein, specifically the p22 form, impedes JAK-STAT signaling to help the virus evade the host innate immune response and, thus, causes resistance to IFN therapy.IMPORTANCE Chronic hepatitis B virus (HBV) infection continues to be a major global health concern, and patients who fail to mount an efficient immune response to clear the virus will develop a life-long chronic infection that can progress to chronic active hepatitis, cirrhosis, and primary hepatocellular carcinoma. There is no definite cure for chronic hepatitis B, and alpha interferon (IFN-α) is the only available immunomodulatory drug, to which only a minority of chronic patients are responsive, with hepatitis B e antigen (HBeAg)-negative patients responding better than HBeAg-positive patients. We herein report that the intracellular HBeAg, also known as precore or p22, inhibits the antiviral signaling of IFN-α, which sheds light on the enigmatic function of precore protein in shaping HBV chronicity and provides a perspective toward areas that need to be further studied to make the current therapy better until a cure is achieved.


Assuntos
Antígenos do Núcleo do Vírus da Hepatite B/metabolismo , Vírus da Hepatite B/patogenicidade , Hepatite B/virologia , Interferon-alfa/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteínas do Core Viral/metabolismo , Adolescente , Adulto , Antivirais/farmacologia , Carcinoma Hepatocelular/metabolismo , Feminino , Células HEK293 , Células Hep G2 , Antígenos E da Hepatite B/metabolismo , Vírus da Hepatite B/genética , Hepatite B Crônica , Humanos , Imunidade Inata , Fígado , Neoplasias Hepáticas/metabolismo , Masculino , Pessoa de Meia-Idade , Transporte Proteico , Fator de Transcrição STAT1/metabolismo , Adulto Jovem
15.
BMC Bioinformatics ; 20(1): 611, 2019 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-31775621

RESUMO

BACKGROUND: Automatic signal-feature extraction algorithms are crucial for profile processing in bioinformatics. Both baseline drift and noise seriously affect the position and peak area of signals. An efficient algorithm named the derivative passing accumulation (DPA) method for simultaneous baseline correction and signal extraction is presented in this article. It is an efficient method using only the first-order derivatives which are obtained through taking the simple differences. RESULTS: We developed a new signal feature extracting procedure. The vector representing the discrete first-order derivative was divided into negative and positive parts and then accumulated to build a signal descriptor. The signals and background fluctuations are easily separated according to this descriptor via thresholding. In addition, the signal peaks are simultaneously located by checking the corresponding intervals in the descriptor. Therefore, the eternal issues of parsing the 1-dimensional output of detectors in biological instruments are solved together. Thereby, the baseline is corrected, and the signal peaks are extracted. CONCLUSIONS: We have introduced a new method for signal peak picking, where baseline computation and peak identification are performed jointly. The testing results of both authentic and artificially synthesized data illustrate that the new method is powerful, and it could be a better choice for practical processing.


Assuntos
Algoritmos , Biologia Computacional/métodos , Processamento de Sinais Assistido por Computador , Biologia Computacional/instrumentação , Humanos
16.
PLoS Pathog ; 13(12): e1006784, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29287110

RESUMO

Hepadnavirus covalently closed circular (ccc) DNA is the bona fide viral transcription template, which plays a pivotal role in viral infection and persistence. Upon infection, the non-replicative cccDNA is converted from the incoming and de novo synthesized viral genomic relaxed circular (rc) DNA, presumably through employment of the host cell's DNA repair mechanisms in the nucleus. The conversion of rcDNA into cccDNA requires preparation of the extremities at the nick/gap regions of rcDNA for strand ligation. After screening 107 cellular DNA repair genes, we herein report that the cellular DNA ligase (LIG) 1 and 3 play a critical role in cccDNA formation. Ligase inhibitors or functional knock down/out of LIG1/3 significantly reduced cccDNA production in an in vitro cccDNA formation assay, and in cccDNA-producing cells without direct effect on viral core DNA replication. In addition, transcomplementation of LIG1/3 in the corresponding knock-out or knock-down cells was able to restore cccDNA formation. Furthermore, LIG4, a component in non-homologous end joining DNA repair apparatus, was found to be responsible for cccDNA formation from the viral double stranded linear (dsl) DNA, but not rcDNA. In conclusion, we demonstrate that hepadnaviruses utilize the whole spectrum of host DNA ligases for cccDNA formation, which sheds light on a coherent molecular pathway of cccDNA biosynthesis, as well as the development of novel antiviral strategies for treatment of hepatitis B.


Assuntos
DNA Ligases/metabolismo , DNA Circular/biossíntese , DNA Viral/biossíntese , Hepadnaviridae/metabolismo , Linhagem Celular , DNA Ligase Dependente de ATP/antagonistas & inibidores , DNA Ligase Dependente de ATP/genética , DNA Ligase Dependente de ATP/metabolismo , DNA Ligases/antagonistas & inibidores , DNA Ligases/genética , Reparo do DNA/genética , Técnicas de Silenciamento de Genes , Técnicas de Inativação de Genes , Células HEK293 , Células Hep G2 , Hepadnaviridae/genética , Hepadnaviridae/patogenicidade , Vírus da Hepatite B/genética , Vírus da Hepatite B/metabolismo , Vírus da Hepatite B/patogenicidade , Hepatócitos/metabolismo , Hepatócitos/virologia , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/fisiologia , Humanos , Redes e Vias Metabólicas , Proteínas de Ligação a Poli-ADP-Ribose/antagonistas & inibidores , Proteínas de Ligação a Poli-ADP-Ribose/genética , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo
17.
PLoS Pathog ; 13(4): e1006296, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28399146

RESUMO

Hepatitis B virus (HBV) replicates its DNA genome through reverse transcription of a viral RNA pregenome. We report herein that the interferon (IFN) stimulated exoribonuclease gene of 20 KD (ISG20) inhibits HBV replication through degradation of HBV RNA. ISG20 expression was observed at basal level and was highly upregulated upon IFN treatment in hepatocytes, and knock down of ISG20 resulted in elevation of HBV replication and attenuation of IFN-mediated antiviral effect. The sequence element conferring the susceptibility of HBV RNA to ISG20-mediated RNA degradation was mapped at the HBV RNA terminal redundant region containing epsilon (ε) stem-loop. Furthermore, ISG20-induced HBV RNA degradation relies on its ribonuclease activity, as the enzymatic inactive form ISG20D94G was unable to promote HBV RNA decay. Interestingly, ISG20D94G retained antiviral activity against HBV DNA replication by preventing pgRNA encapsidation, resulting from a consequence of ISG20-ε interaction. This interaction was further characterized by in vitro electrophoretic mobility shift assay (EMSA) and ISG20 was able to bind HBV ε directly in absence of any other cellular proteins, indicating a direct ε RNA binding capability of ISG20; however, cofactor(s) may be required for ISG20 to efficiently degrade ε. In addition, the lower stem portion of ε is the major ISG20 binding site, and the removal of 4 base pairs from the bottom portion of ε abrogated the sensitivity of HBV RNA to ISG20, suggesting that the specificity of ISG20-ε interaction relies on both RNA structure and sequence. Furthermore, the C-terminal Exonuclease III (ExoIII) domain of ISG20 was determined to be responsible for interacting with ε, as the deletion of ExoIII abolished in vitro ISG20-ε binding and intracellular HBV RNA degradation. Taken together, our study sheds light on the underlying mechanisms of IFN-mediated HBV inhibition and the antiviral mechanism of ISG20 in general.


Assuntos
Exonucleases/metabolismo , Exonucleases/farmacologia , Vírus da Hepatite B/metabolismo , RNA Viral/efeitos dos fármacos , Ribonucleases/metabolismo , Replicação Viral/efeitos dos fármacos , Antivirais/farmacologia , Replicação do DNA/efeitos dos fármacos , Replicação do DNA/fisiologia , Exorribonucleases , Vírus da Hepatite B/isolamento & purificação , Hepatócitos/efeitos dos fármacos , Hepatócitos/virologia , Humanos , Estabilidade de RNA/efeitos dos fármacos , RNA Viral/metabolismo , Transcrição Reversa/efeitos dos fármacos , Replicação Viral/fisiologia
18.
Drug Metab Dispos ; 45(3): 260-268, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28053220

RESUMO

Rivaroxaban, a direct Factor Xa inhibitor, is indicated for stroke prevention in nonvalvular atrial fibrillation (AF). Studies have revealed that the clearance of rivaroxaban is largely attributed to CYP3A4, CYP2J2 metabolism, and P-glycoprotein (P-gp) efflux pathways. Amiodarone and dronedarone are antiarrhythmic agents employed in AF management. Amiodarone, dronedarone, and their major metabolites, N-desethylamiodarone (NDEA) and N-desbutyldronedarone (NDBD), demonstrate inhibitory effects on CYP3A4 and CYP2J2 with U.S. Food and Drug Administration-recommended probe substrates. In addition, both amiodarone and dronedarone are known P-gp inhibitors. Hence, the concomitant administration of these antiarrhythmic agents has the potential to augment the systemic exposure of rivaroxaban through simultaneous impairment of its clearance pathways. Currently, however, clinical data on the extent of these postulated drug-drug interactions are lacking. In this study, in vitro inhibition assays using rivaroxaban as the probe substrate demonstrated that both dronedarone and NDBD produced reversible inhibition as well as irreversible mechanism-based inactivation of CYP3A4- and CYP2J2-mediated metabolism of rivaroxaban. However, amiodarone and NDEA were observed to cause reversible inhibition as well as mechanism-based inactivation of CYP3A4 but not CYP2J2. In addition, amiodarone, NDEA, and dronedarone, but not NDBD, were determined to inhibit P-gp-mediated rivaroxaban transport. The in vitro inhibition parameters were fitted into a mechanistic static model, which predicted a 37% and 31% increase in rivaroxaban exposure due to the inhibition of hepatic and gut metabolism by amiodarone and dronedarone, respectively. A separate model quantifying the inhibition of P-gp-mediated efflux by amiodarone or dronedarone projected a 9% increase in rivaroxaban exposure.


Assuntos
Antiarrítmicos/farmacologia , Inibidores das Enzimas do Citocromo P-450/farmacologia , Inibidores do Fator Xa/farmacocinética , Modelos Biológicos , Rivaroxabana/farmacocinética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/antagonistas & inibidores , Animais , Antiarrítmicos/metabolismo , Transporte Biológico , Citocromo P-450 CYP2J2 , Citocromo P-450 CYP3A/metabolismo , Inibidores das Enzimas do Citocromo P-450/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Cães , Relação Dose-Resposta a Droga , Interações Medicamentosas , Mucosa Intestinal/metabolismo , Fígado/metabolismo , Células Madin Darby de Rim Canino , Proteínas Recombinantes , Especificidade por Substrato , Fatores de Tempo
19.
J Virol ; 89(18): 9200-12, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26109732

RESUMO

UNLABELLED: Interferon alpha (IFN-α) is an approved medication for chronic hepatitis B therapy. Besides acting as an immunomodulator, IFN-α elicits a pleiotropic antiviral state in hepatitis B virus (HBV)-infected hepatocytes, but whether or not IFN-α impedes the late steps of the HBV life cycle, such as HBV secretion, remains elusive. Here we report that IFN-α treatment of HepAD38 cells with established HBV replication selectively reduced HBV virion release without altering intracellular viral replication or the secretion of HBV subviral particles and nonenveloped capsids. In search of the interferon-stimulated gene(s) that is responsible for the reduction of HBV virion release, we found that tetherin, a broad-spectrum antiviral transmembrane protein that inhibits the egress of a variety of enveloped viruses, was highly induced by IFN-α in HepAD38 cells and in primary human hepatocytes. We further demonstrated that the expression of full-length tetherin, but not the C-terminal glycosylphosphatidylinositol (GPI) anchor-truncated form, inhibited HBV virion egress from HepAD38 cells. In addition, GPI anchor-truncated tetherin exhibited a dominant-negative effect and was incorporated into the liberated virions. We also found colocalization of tetherin and HBV L protein at the intracellular multivesicular body, where the budding of HBV virions takes place. In line with this, electron microscopy demonstrated that HBV virions were tethered in the lumen of the cisterna membrane under tetherin expression. Finally, knockdown of tetherin or overexpression of dominant negative tetherin attenuated the IFN-α-mediated reduction of HBV virion release. Taken together, our study suggests that IFN-α inhibits HBV virion egress from hepatocytes through the induction of tetherin. IMPORTANCE: Tetherin is a host restriction factor that blocks the egress of a variety of enveloped viruses through tethering the budding virions on the cell surface with its membrane anchor domains. Here we report that interferon directly and selectively inhibits the secretion of HBV virions, but not subviral particles or nonenveloped capsids, through the induction of tetherin in hepatocyte-derived cells. The antiviral function of tetherin requires the carboxyl-terminal GPI anchor, while the GPI anchor deletion mutant exhibits dominant negative activity and attaches to liberated HBV virions. Consistent with the fact that HBV is an intracellular budding virus, microscopy analyses demonstrated that the tethering of HBV virions occurs in the intracellular cisterna and that tetherin colocalizes with HBV virions on the multivesicular body, which is the HBV virion budding site. Our study not only expands the antiviral spectrum of tetherin but also sheds light on the mechanisms of interferon-elicited anti-HBV responses.


Assuntos
Antígenos CD/biossíntese , Antivirais/farmacologia , Capsídeo/metabolismo , Vírus da Hepatite B/fisiologia , Liberação de Vírus/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Antígenos CD/genética , Capsídeo/ultraestrutura , Linhagem Celular , Proteínas Ligadas por GPI/biossíntese , Proteínas Ligadas por GPI/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Glicosilfosfatidilinositóis , Vírus da Hepatite B/ultraestrutura , Hepatócitos/metabolismo , Hepatócitos/ultraestrutura , Hepatócitos/virologia , Humanos , Interferon-alfa/farmacologia
20.
Analyst ; 140(23): 7984-96, 2015 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-26517702

RESUMO

A novel approach, coined the Corner-Cutting method (CC, for short), is presented in this paper which affords the efficient construction of the baseline for analytical data streams. It was derived from techniques used in computer aided geometric design, a field established to produce curves and surfaces for the aviation and automobile industries. This corner-cutting technique provided a very efficient baseline calculation through an iterative process. Furthermore, a terminal condition was developed to make the process fully automated and truly non-parametric. Finally, we employed a Bezier curve to convert the iterating result into a smooth baseline solution. Compared to other iterative schemes used for baseline detection, our method was significantly efficient, easier to implement, and had a broader range of applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA