Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Insect Mol Biol ; 33(1): 81-90, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37815404

RESUMO

Insect odorant binding proteins (OBPs) were initially regarded as carriers of the odorants involved in chemosensation. However, it had been observed that a growing number of OBP genes exhibited broad expression patterns beyond chemosensory tissues. Here, an OBP gene (OBP31) was found to be highly expressed in the larval ventral nerve cord, adult brain and male reproductive organ of Spodoptera frugiperda. An OBP31 knockout strain (OBP31-/- ) was generated by CRISPR/Cas9 mutagenesis. For OBP31-/- , the larvae needed longer time to pupate, but there was no difference in the pupal weight between OBP31-/- and wild type (WT). OBP31-/- larvae showed stronger phototaxis than the WT larvae, indicating the importance of OBP31 in light perception. For mating rhythm of adults, OBP31-/- moths displayed an earlier second mating peak. In the cross-pairing of OBP31-/- and WT moths, the mating duration was longer, and hatchability was lower in OBP31-/- group and OBP31+/- ♂ group than that in the WT group. These results suggested that OBP31 played a vital role in larval light perception and male reproductive process and could provide valuable insights into understanding the biological functions of OBPs that were not specific in chemosensory tissues.


Assuntos
Mariposas , Receptores Odorantes , Masculino , Animais , Spodoptera/genética , Spodoptera/metabolismo , Fototaxia , Sequência de Aminoácidos , Mariposas/genética , Larva/genética , Larva/metabolismo , Reprodução , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo
2.
Int J Mol Sci ; 22(21)2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34769151

RESUMO

Juvenile hormone (JH) plays a critical role in many physiological activities of Arthropoda. Juvenile hormone acid methyltransferase (JHAMT) is involved in the last steps of JH biosynthesis as an important rate-limiting enzyme. In recent studies, an increasing number of JHAMTs were identified in arthropods, but no JHAMT was reported in spiders. Herein, eight JHAMTs were identified in the pond wolf spider, Pardosa pseudoannulata, all containing the well conserved S-adenosyl-L-methionine binding motif. JHAMT-1 and the other seven JHAMTs were located at chromosome 13 and chromosome 1, respectively. Multiple alignment and phylogenetic analysis showed that JHAMT-1 was grouped together with insect JHAMTs independently and shared high similarities with insect JHAMTs compared to the other seven JHAMTs. In addition, JHAMT-1, JHAMT-2, and JHAMT-3 were highly expressed in the abdomen of spiderlings and could respond to the stimulation of exogenous farnesoic acid. Meanwhile, knockdown of these three JHAMTs caused the overweight and accelerated molting of spiderlings. These results demonstrated the cooperation of multi-JHAMTs in spider development and provided a new evolutionary perspective of the expansion of JHAMT in Arachnida.


Assuntos
Proteínas de Artrópodes/metabolismo , Metiltransferases/metabolismo , Aranhas/metabolismo , Animais , Proteínas de Artrópodes/genética , Feminino , Expressão Gênica , Hormônios Juvenis/genética , Hormônios Juvenis/metabolismo , Masculino , Metiltransferases/genética , Filogenia , Aranhas/genética
3.
Microb Pathog ; 122: 151-155, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29894809

RESUMO

Porcine epidemic diarrhea virus (PEDV) causes acute diarrhea and dehydration in new-born piglets with subsequent economic losses to swine industry. In the current study, gene encoding of 381aa-792aa spike protein (S1) with the main epitope relative to virus neutralization of PEDV was amplified by RT-PCR and inserted into vector pET-30A(+). The plasmid was transferred into Escherichia coli BL21 (DE3). Meanwhile, recombinant protein expression was induced by isopropy1-ß-galactopyranoside (IPTG). After denaturation and renaturation of inclusion bodies, the S1 protein was obtained by using purified recombinant S1 protein in immunized female BALB/c mice. Monoclonal antibodies (MAb) against S1 protein, named 4C7 by hybridoma technique were gained successfully. The result showed that MAb can specifically respond to S1 protein and PEDV via ELISA, Western bolt and immunofluorescence assay methods. A sandwich ELISA (S-ELISA) was established by using the captured monoclonal antibodies 4C7. The sensitivity and specificity were compared between S-ELISA and RT-PCR, which showed similar sensitivity and specificity. This work indicated that S-ELISA would be a significant tool alongside a specific diagnostic reagent for PEDV in future.


Assuntos
Infecções por Coronavirus/veterinária , Testes Diagnósticos de Rotina/métodos , Ensaio de Imunoadsorção Enzimática/métodos , Fezes/virologia , Vírus da Diarreia Epidêmica Suína/isolamento & purificação , Doenças dos Suínos/diagnóstico , Doenças dos Suínos/virologia , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/isolamento & purificação , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/isolamento & purificação , Western Blotting , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/virologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Sensibilidade e Especificidade , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Suínos
4.
J Chem Ecol ; 39(9): 1221-31, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23955060

RESUMO

Semiochemicals such as sex pheromones and plant volatiles are crucial components of insect mating systems and host plant localization. In the olfactory signal transduction pathway, odorant-binding proteins (OBPs) are important elements that function in the first step of the pathway by carrying hydrophobic semiochemicals across the sensillum lymph to the olfactory receptors (ORs). In this study, we examined the binding affinities of semiochemicals to AlinOBP10, a putative OBP from the alfalfa plant bug, Adelphocoris lineolatus, that we demonstrate is expressed mainly in sensory organs. We then characterized the biological activities of the high affinity semiochemicals by measuring their electrophysiological activities in antennae and behavioral responses in the plant bug. AlinOBP10 displayed weak binding affinities to two major putative pheromone components, hexyl butyrate and (E)-2-hexenyl butyrate. In contrast, AlinOBP10 exhibited higher binding affinities to six host plant volatiles, namely myrcene, ß-pinene, ß-ionone, 3-hexanone, (E)-2-hexenal, and 1-hexanol. The biological activities of these six putative ligands were further studied in electroantennogram recordings and Y-tube olfactometer trials. The three compounds, (E)-2-hexenal, 1-hexanol, and 3-hexanone elicited strong electrophysiological responses, but elicited distinct behaviors. While 3-hexanone was attractive to female adults, (E)-2-hexenal and 1-hexanol were significant repellents. Although a weak electrophysiological response was elicited with ß-pinene, it was a strong repellent. These results demonstrate that AlinOBP10 can interact with attractants, as well as repellents, with some specificity toward plant volatiles over sex pheromones.


Assuntos
Heterópteros/fisiologia , Feromônios/metabolismo , Receptores Odorantes/metabolismo , Animais , Antenas de Artrópodes/metabolismo , Comportamento Animal/fisiologia , Feminino , Masculino , Proteínas Recombinantes/metabolismo , Compostos Orgânicos Voláteis/metabolismo
5.
Zool Res ; 44(1): 43-52, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36266934

RESUMO

Lycosidae females demonstrate meticulous maternal care of offspring by carrying egg sacs and juvenile spiderlings during the reproductive stage. Nuclear receptors (NRs), especially the ecdysone receptor (EcR) and ultraspiracle (USP), have attracted considerable attention in the regulation of arthropod development and reproduction due to their pivotal roles in ecdysteroid signaling cascades. In the present study, 23 NRs, including one EcR and two USPs, were identified in the genome of the predatory wolf spider Pardosa pseudoannulata. RNA interference (RNAi) targeting EcR and USP-1 inhibited spiderling development and resulted in non-viable eggs in the egg sacs. EcR and USP-1 responded to changes in ecdysteroid levels, and interference in ecdysteroid biosynthesis led to similar phenotypes as dsEcR and dsUSP-1 treatments. These findings suggest that EcR/USP-1-mediated ecdysteroid signaling regulates P. pseudoannulata development and reproduction. The P. pseudoannulata females with suppressed ecdysteroid signaling proactively consumed their non-viable egg sacs, resulting in a 7.19 d shorter first reproductive cycle than the controls. Termination of the failed reproductive cycle enabled the spiders to produce a new egg sac more rapidly. This reproductive strategy may partially rescue the reduction in population growth due to non-viable eggs and compensate for the physiological expenditure of wasted maternal care, which would be beneficial for the conservation of P. pseudoannulata populations and their natural control of insect pests.


Assuntos
Ecdisteroides , Aranhas , Feminino , Animais , Aranhas/genética , Reprodução , Transdução de Sinais
6.
Insect Sci ; 30(5): 1325-1336, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36647341

RESUMO

Odorant-binding proteins (OBPs) play key roles in the perception of semiochemicals in insects. Several OBPs in insect olfactory systems have been functionally characterized, and they provide excellent targets for pest control. The functions of some OBPs that are highly expressed in the nonsensory organs of insects remain unclear. Here, the physiological function of an OBP (OBP27) that was highly expressed in the nonsensory organs of Spodoptera frugiperda was studied. OBP27 was nested within the Plus-C cluster according to phylogenetic analysis. The transcription of OBP27 steadily increased throughout the development of S. frugiperda, and transcripts of this gene were abundant in the fat body and male reproductive organs. An OBP27 knockout strain with an early frameshift mutation was obtained using the clustered regularly interspaced palindromic repeats (CRISPR) / CRISPR-associated protein 9 (Cas9) system. The development time of OBP27-/- larvae was significantly longer than that of other larvae. Both male and female OBP27-/- pupae weighed significantly less than wild-type (WT) pupae. In crosses of OBP27-/- males or females, the mating rate was lower and the mating duration was longer for OBP27-/- male-WT female pairs than for WT-WT pairs. By contrast, the mating rate, hatching rate, and number of eggs of OBP27-/- female-WT male pairs and WT-WT pairs were similar. These findings indicate that OBP27 plays an important role in the larval development and mating process in male adults. Generally, our findings provide new insights into the physiological roles of nonsensory OBPs.

7.
J Agric Food Chem ; 71(47): 18546-18556, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-37963218

RESUMO

Insects coordinate a variety of mechanisms to overcome the feeding challenges, including gene transcriptional plasticity and stable symbioses in the gut. Here, Spodoptera frugiperda larvae were reared on corn and rice plants for successive generations to obtain two specific strains. The rice strain displayed a longer developmental period, lower female fecundity, and intrinsic growth rate at G1 and G5 but not at G10. KEGG analysis of the G1, G5, and G11 gut transcriptome indicated that detoxification enzymes might play vital roles in host adaptation. RNAi-mediated knockdown of CYP12A2 and UGT41B8, which were highly expressed in the gut of the rice strain, significantly reduced the larval adaptability to rice. Besides, the dsCYP12A2-treated larvae displayed an increased sensitivity to luteolin, a flavonoid phytochemical. The KEGG function prediction of gut microbiota indicated that the high enrichment level of metabolism in the rice strain would play essential roles in rice adaptation.


Assuntos
Microbiota , Oryza , Animais , Oryza/genética , Spodoptera/genética , Zea mays/genética , Transcriptoma , Larva/genética
8.
Insect Sci ; 30(3): 625-636, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36169087

RESUMO

The CRISPR/Cas9 system has been successfully applied in dozens of diverse species; although the screening of successful CRISPR/Cas9 editing events remains particularly laborious, especially for those that occur at relatively low frequency. Recently, a co-CRISPR strategy was proved to enrich the desired CRISPR events. Here, the co-CRISPR strategy was developed in the Fall armyworm, Spodoptera frugiperda, with kynurenine 3-monooxygenase gene (kmo) as a marker. The kmo mosaics induced by single-guide RNAs (sgRNAs)/Cas9 displayed the darker green color phenotype in larvae, compared with wild type (brown), and mosaic-eye adults were significantly acquired from the mosaic larvae group. In the kmo knockout strain, no significant difference was observed in larval development and adult reproduction. Acetylcholinesterase 2 (ace2) and Wnt1 were selected as target genes to construct the co-CRISPR strategy using kmo marker. By co-injection of kmo and ace2 sgRNAs, the mutant efficiency of ace2 was significantly increased in the kmo mosaic (larvae or adults) groups. Similarly, more malformed pupae with Wnt1 mutations were observed in the darker green larvae group. Taken together, these results demonstrated that kmo was a suitable visible marker gene for the application and extension of co-CRISPR strategy in Fall armyworm. Using darker green color in larvae or mosaic-eye in adults from kmo knockout as a marker, the mutant efficiency of a target gene could be enriched in a Fall armyworm group consisting of marked individuals. The co-CRISPR strategy is helpful for gene function studies by the knockout technique with no or lethal phenotypes.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Animais , Edição de Genes/métodos , Spodoptera/genética , Acetilcolinesterase/genética , Enzima de Conversão de Angiotensina 2/genética , Mutação , Larva/genética
9.
Insect Sci ; 30(3): 693-704, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36093889

RESUMO

The lipid metabolism plays an essential role in the development and reproduction of insects, and lipases are important enzymes in lipid metabolism. In Nilaparvata lugens, an important insect pest on rice, triacylglycerol hydrolytic activities were different among tissues, with high activity in integument, ovary, and fat body, but low activity in intestine. To figure out the tissue-specific triacylglycerol hydrolytic activity, we identified 43 lipases in N. lugens. Of these 43 lipases, 23 belonged to neutral lipases, so this group was selected to perform further experiments on triacylglycerol hydrolysis. The complete motifs of catalytic triads, ß9 loop, and lid motif, are required for the triacylglycerol hydrolytic activity in neutral lipases, which were found in some neutral lipases with high gene expression levels in integument and ovary, but not in intestine. The recombinant proteins of 3 neutral lipases with or without 3 complete motifs were obtained, and the activity determination confirmed the importance of 3 motifs. Silencing XM_022331066.1, which is highly expressed in ovary and with 3 complete motifs, significantly decreased the egg production and hatchability of N. lugens, partially through decline of the lipid metabolism. In summary, at least one-third of important motifs were incomplete in all neutral lipases with high gene expression in intestine, which could partially explain why the lipase activity in intestine was much lower than that in other tissues. The low activity to hydrolyze triacylglycerol in N. lugens intestine might be associated with its food resource and nutrient components, and the ovary-specific neutral lipases were important for N. lugens reproduction.


Assuntos
Hemípteros , Feminino , Animais , Hidrólise , Triglicerídeos/metabolismo , Lipase/genética , Lipase/metabolismo , Insetos/metabolismo
10.
Insect Sci ; 29(2): 443-452, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34237799

RESUMO

Vitellogenin receptor (VgR) is crucial for vitellogenin (Vg) uptake by oocytes. VgR is less known in Arachnida, especially in spiders. Different from only one VgR in an arthropod species, two VgRs, VgR-1 and VgR-2, were found in the pond wolf spider, Pardosa pseudoannulata. Both VgRs had the typical domains of the low-density lipoprotein receptor family except for the absence of the ligand-binding domain 1 in VgR-2. Spatiotemporal expression profiles showed that two VgR genes were consistently highly expressed in females and their ovaries, but VgR-1 was 48-fold that of VgR-2 in ovaries. The transcriptional level of VgR-1 was significantly downregulated by RNAi, but it did not work for VgR-2 although several trials were performed. Vg-1 and Vg-2 might be the ligands of VgR-1 because their expressions were also decreased in the dsVgR-1-treated females. Silencing VgR-1 prolonged the pre-oviposition period by 56 h. The expression of VgRs and Vgs were upregulated by juvenile hormones (JHs), which suggested that JHs were the essential factors to vitellogenesis in the spider. The present study revealed the importance of VgR-1 in the spider oviposition, which will improve the understanding on VgR physiological functions in spiders.


Assuntos
Oviposição , Aranhas , Animais , Proteínas do Ovo/química , Proteínas do Ovo/genética , Proteínas do Ovo/metabolismo , Feminino , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Aranhas/genética , Aranhas/metabolismo
11.
RSC Adv ; 10(19): 11524-11534, 2020 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35495316

RESUMO

Magnetic nanoparticles (MNPs) chelating with metal ions can specifically interact with poly-histidine peptides and facilitate immobilization and purification of proteins with poly-histidine tags. Fabrication of MNPs is generally complicated and time consuming. In this paper, we report the preparation of Ni(ii) ion chelated MNPs (Ni-MNPs) in two stages for protein immobilization and purification. In the first stage, organic ligands including pentadentate tris (carboxymethyl) ethylenediamine (TED) and tridentate iminodiacetic acid (IDA) and inorganic Fe3O4-SiO2 MNPs were synthesized separately. In the next stage, ligands were grafted to the surface of MNPs and MNPs with a TED or IDA modified surface were acquired, followed by chelating with Ni(ii) ions. The Ni(ii) ion chelated forms of MNPs (Ni-MNPs) were characterized including morphology, surface charge, structure, size distribution and magnetic response. Taking a his-tagged glycoside hydrolase DspB (Dispersin B) as the protein representative, specific interactions were confirmed between DspB and Ni-MNPs. Purification of his-tagged DspB was achieved with Ni-MNPs that exhibited better performance in terms of purity and activity of DspB than commercial Ni-NTA. Ni-MNPs as enzyme carriers for DspB also exhibited good compatibility and reasonable reusability as well as improved performance in various conditions.

12.
Pest Manag Sci ; 76(2): 480-486, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31240832

RESUMO

BACKGROUND: Long-term monitoring data is helpful to understand the fluctuation of susceptibility and pattern of cross resistance in insecticide resistance management. After the occurrence of imidacloprid resistance, the brown planthopper (BPH) has gradually developed resistance to thiamethoxam and clothianidin since 2010, but not to dinotefuran and nitenpyram. Here, we analyzed susceptibilities data of five neonicotinoids during 2005-2017 in East Asia and Vietnam to conduct cross-resistance patterns among neonicotinoids. To determine the factors of development of cross resistance in laboratory bioassays, we used the imidacloprid resistant and control strains that were selected from filed populations in the Philippines and Vietnam. RESULTS: The Linear Mixed Models (LMM) analyses of insecticide susceptibility data showed that the slope values of imidacloprid resistance effects were 0.68 and 1.09 for resistance to thiamethoxam and clothianidin, respectively. Laboratory bioassay results showed that the LD50 values for thiamethoxam and clothianidin in resistant strains (1.4-5.5 µg g-1 ) were 3.2-16.4 times higher than those in the control strains (0.28-1.5 µg g-1 ). However, the increase in the LD50 values for imidacloprid was not related to that for dinotefuran and nitenpyram based on the results of the LMM analysis and laboratory bioassay. CONCLUSION: Our results demonstrate that the development of imidacloprid resistance result in strong-cross resistance to some neonicotinoids, thiamethoxam and clothianidin, but not to others, dinotefuran and nitenpyram. We anticipate that our findings will be a starting point for understanding mechanism of the different trend of cross resistance by analyzing long-term susceptibility data and laboratory bioassays in insect pests. © 2019 Society of Chemical Industry.


Assuntos
Hemípteros , Animais , Ásia Oriental , Resistência a Inseticidas , Inseticidas , Neonicotinoides , Nitrocompostos , Filipinas , Vietnã
13.
Insect Sci ; 26(4): 683-694, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29425401

RESUMO

The endosymbionts play vital roles in growth, development and reproduction in insects. Yeast-like endosymbionts (YLSs) have been well studied in Nilaparvata lugens (N. lugens), but little is known about the tissue-specific bacterial microbiomes, especially on the microbial intersection among internal tissues. Here, the correlation of microbial composition, structure, dispersal ability and functional profiling were illuminated in two tissues, the fat body and ovary in N. lugens. A total of 11 phyla and 105 genera were captured from all samples; Firmicutes and Proteobacteria were the most predominant and accounted for more than 99% in all samples. However, the relative abundance of Firmicutes and Proteobacteria was significantly different in ovary and fat body through Fisher's Least Significant Difference test. Microbial diversity but not the richness index in the two tissues exhibited significant difference. Furthermore, the microbial community structure of the ovary and fat body were primarily determined by tissue quality. Firmicutes showed strong dispersal ability between ovary and fat body based on the quantitative null model assessing, indicating the frequent interaction of these microbiomes in the two tissues. In addition, the Kyoto Encyclopedia of Genes and Genomes pathways of microbial participation were delineated. The ten most abundant pathways counted for over 46% of the annotation and were shared between the two tissues, mainly containing Energy Metabolism and Amino Acid Metabolism/Biosynthesis. The results will provide insights into the correlation of microbial community structure between ovary and fat body of N. lugens.


Assuntos
Corpo Adiposo/microbiologia , Hemípteros/microbiologia , Animais , Feminino , Redes e Vias Metabólicas , Microbiota , Ovário/microbiologia
14.
Insect Sci ; 25(3): 409-417, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28026125

RESUMO

Insecticide resistance is inevitable if an insecticide is widely used to control insect pests. Fortunately, the resistance-associated fitness costs often give chances to manage resistances. In most cases, the fitness cost in resistant insects is often evaluated under laboratory conditions for insect development, which limits its practical application in pest control in the field. In a laboratory population R9 with 253-fold resistance to chlorpyrifos after nine-generation selection with chlorpyrifos, the relative fitness was only 0.206 under laboratory conditions (25°C, humidity 70%-80% and 16 h light/8 h dark photoperiod), when compared to S9, a susceptible counterpart (resistance ratio = 2.25-fold) from the same origin as R9 but without any selection with insecticides. Temperatures varied the resistance-associated fitness costs, with enhanced costs at high temperatures and reduced costs at low temperatures, such as 0.174 at 32°C and 0.527 at 18°C. The copulation rate and fecundity were two key factors for the reduced costs at low temperatures. Another finding was that R9 individuals needed much more time to recover from heat shock than that of S9, but R9 and S9 individuals were similarly sensitive to cold shock. The low fitness cost at low temperatures would increase the overwintering population, which might further increase risks of rapid development and widespread distribution of chlorpyrifos resistance in Nilaparvata lugens.


Assuntos
Aptidão Genética , Hemípteros/fisiologia , Resistência a Inseticidas/fisiologia , Temperatura , Animais , Clorpirifos , Feminino , Inseticidas , Tábuas de Vida , Masculino , Estresse Fisiológico
15.
Insect Sci ; 25(3): 401-408, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28092127

RESUMO

Nilaparvata lugens and Sogatella furcifera are two primary planthoppers on rice throughout Asian countries and areas. Neonicotinoid insecticides, such as imidacloprid (IMI), have been extensively used to control rice planthoppers and IMI resistance consequently occurred with an important mechanism from the over-expression of P450 genes. The induction of P450 genes by IMI may increase the ability to metabolize this insecticide in planthoppers and increase the resistance risk. In this study, the induction of P450 genes was compared in S. furcifera treated with IMI and nitromethyleneimidazole (NMI), in two planthopper species by IMI lethal dose that kills 85% of the population (LD85 ), and in N. lugens among three IMI doses (LD15 , LD50 and LD85 ). When IMI and NMI at the LD85 dose were applied to S. furcifera, the expression changes in most P450 genes were similar, including the up-regulation of nine genes and down-regulation of three genes. In terms of the expression changes in 12 homologous P450 genes between N. lugens and S. furcifera treated with IMI at the LD85 dose, 10 genes had very similar patterns, such as up-regulation in seven genes, down-regulation in one gene and no significant changes in two genes. When three different IMI doses were applied to N. lugens, the changes in P450 gene expression were much different, such as up-regulation in four genes at all doses and dose-dependent regulation of the other nine genes. For example, CYP6AY1 could be induced by all IMI doses, while CYP6ER1 was only up-regulated by the LD50 dose, although both genes were reported important in IMI resistance. In conclusion, P450 genes in two planthopper species showed similar regulation patterns in responding to IMI, and the two neonicotinoid insecticides had similar effects on P450 gene expression, although the regulation was often dose-dependent.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Expressão Gênica/efeitos dos fármacos , Hemípteros/efeitos dos fármacos , Inseticidas/toxicidade , Neonicotinoides/toxicidade , Nitrocompostos/toxicidade , Animais , Hemípteros/genética , Hemípteros/metabolismo
16.
Insect Sci ; 25(6): 978-990, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28556457

RESUMO

The physiological functions of insect foregut, especially in xenobiotic detoxification, are scarcely reported because of unimportance in appearance and insufficient molecular information. The cockroach Periplaneta americana, an entomological model organism, provides perfect material to study physiological functions of foregut tissue due to its architectural feature. Through Illumina sequencing of foregut tissue from P. americana individuals (control) or insects treated with cycloxaprid, as a novel neonicotinoid insecticide, 54 193 166 clean reads were obtained and further assembled into 53 853 unigenes with an average length of 366 bp. Furthermore, the number of unigenes involved in xenobiotic detoxification was analyzed, mainly including 70 cytochrome P450s, 12 glutathione S-transferases (GSTs), seven carboxylesterases (CarEs) and seven adenosine triphosphate-binding cassette (ABC) transporters. Compared to control, the expression of 22 xenobiotic detoxification unigenes was up-regulated after cycloxaprid application, mainly containing 18 P450s, one GST, two CarEs and one ABC adenosine triphosphate transporter, indicating that the oxidation-reduction was the major reactive process to cycloxaprid application. Through quantitative real-time polymerase chain reaction analysis, the expression of selected unigenes (six P450s, one GST and one CarE) was up-regulated at least two-fold following cycloxaprid treatment, and was generally in agreement with transcriptome data. Compared to the previous midgut transcriptome of P. americana, it looks like the expressive abundance of the xenobiotic detoxification unigenes might be important factors to the detoxifying functional differences between foregut and midgut. In conclusion, insect foregut would also play important roles in the physiological processes related to xenobiotic detoxification.


Assuntos
Trato Gastrointestinal/metabolismo , Perfilação da Expressão Gênica , Inativação Metabólica , Periplaneta/genética , Periplaneta/metabolismo , Xenobióticos/metabolismo , Animais , Periplaneta/anatomia & histologia
17.
Pest Manag Sci ; 74(2): 456-464, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28898522

RESUMO

BACKGROUND: The two rice planthoppers, Nilaparvata lugens and Sogatella furcifera, have different life cycles in the regions of East Asia, the Red River Delta, and the Mekong Delta. The susceptibilities of these species to a range of insecticides have not previously been compared among the three regions over multiple years. Here, we describe the differences and similarities in insecticide susceptibilities of the two species among the three regions in 2006-2011. RESULTS: In all three regions in 2006 - 2011, N. lugens developed high and moderate levels of resistance to imidacloprid and thiamethoxam, respectively, but this species did not develop resistance to fipronil. In contrast, S. furcifera developed a high level of resistance to fipronil. The ranges in 50% lethal dose (LD50 ) values for N. lugens treated with both imidacloprid and thiamethoxam were similar over time between East Asia and the Red River Delta, and were different in the Mekong Delta. CONCLUSION: The results support the idea that resistant populations migrate from the Red River Delta region to East Asia. Therefore, continuous monitoring of the susceptibility of N. lugens to insecticides in the Red River Delta is very important for insecticide resistance management in East Asia. © 2017 Society of Chemical Industry.


Assuntos
Hemípteros/efeitos dos fármacos , Resistência a Inseticidas , Inseticidas/farmacologia , Animais , Sudeste Asiático , Ásia Oriental , Especificidade da Espécie , Fatores de Tempo
18.
Sci Rep ; 7(1): 11384, 2017 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-28900174

RESUMO

A broadband photodetector has been developed on the basis of ZnO nanowires (NWs)/Rhodamine B (RhB) hybrid system. The device is fabricated by spraying NWs on to gold interdigital electrodes followed by modifying the NWs via an RhB solution-casting process. Measurements show that the as-fabricated device demonstrates photoresponsivity ranging from 300 nm to 700 nm with a bandwidth as large as 400 nm. The role of the dye sensitizer adsorbed on the surface of NWs is modeled to alter the transportation path of photo-generated carriers. The calculations based on the measurements reveal that the device exhibits a prominent responsivity in the interested band with maximum responsivity of 5.5 A/W for ultraviolet (UV) light and 3 A/W for visible (VIS) light under 8 V bias, respectively. The sensitization not only widens the response spectrum with external quantum efficiency leaping up to 771% at VIS but also improves UV responsivity with maximum 51% enhancement. From the time-dependent photo-current measurement, it is found that the response time (rise and decay times in total) of the device largely reduced from 17.5 s to 3.3 s after sensitization. A comparison of the obtained photodetector with other ZnO-based photodetectors is summarized from the view point of responsivity and bandwidth.


Assuntos
Nanofios , Fotometria/métodos , Rodaminas , Óxido de Zinco , Nanofios/química , Nanofios/ultraestrutura , Fotometria/instrumentação , Rodaminas/química , Análise Espectral , Óxido de Zinco/química
19.
Insect Sci ; 23(5): 688-94, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25755197

RESUMO

Neonicotinoids, such as imidacloprid, are key insecticides extensively used for control of Nilaparvata lugens. However, imidacloprid resistance has been reported in many Asian countries in recent years. To understand the roles of the chlorine atom of pyridyl group on insecticidal activity and resistance, the atom was removed to generate an imidacloprid analogue DC-Imi (DesChlorine Imidacloprid). DC-Imi showed significantly higher toxicity than imidacloprid in the susceptible strain of N. lugens, but had medium level cross-resistance in an imidacloprid-resistant strain. In Xenopus oocyte expressed nicotinic acetylcholine receptors (nAChRs) Nlα1/rß2, the inward currents evoked by DC-Imi were detected and could be blocked by typical nAChRs antagonist dihydro-ß-erythroidine (DHßE), which demonstrated that DC-Imi acted as an agonist on insect nAChRs. The efficacy of DC-Imi on Nlα1/rß2 was 1.8-fold higher than that of imidacloprid. In addition, the influence of an imidacloprid resistance associated mutation (Y151S) on agonist potencies was evaluated. Compared with the wild-type receptor, the mutation reduced maximal inward current of DC-Imi to 55.6% and increased half maximal effective concentration (EC50 ) to 3.53-fold. Compared with imidacloprid (increasing EC50 to 2.38-fold of wild-type receptor), Y151S mutation decreased DC-Imi potency more significantly. The results indicated that the selective and possibly high toxicities could be achieved through the modification of 6-chloro-3-pyridyl group in imidacloprid and other neonicotinoids.


Assuntos
Hemípteros/metabolismo , Imidazóis/farmacologia , Inseticidas/farmacologia , Antagonistas Nicotínicos/farmacologia , Nitrocompostos/farmacologia , Animais , Di-Hidro-beta-Eritroidina/farmacologia , Hemípteros/genética , Resistência a Inseticidas , Mutação , Ninfa/genética , Ninfa/metabolismo , Oócitos , Receptores Nicotínicos/metabolismo , Xenopus
20.
Sci Rep ; 5: 8073, 2015 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-25627422

RESUMO

Insect chemosensory proteins (CSPs) are a family of small soluble proteins. To date, their physiological functions in insect olfaction remain largely controversial in comparison to odorant binding proteins (OBPs). In present study, we reported the antenna specific expression of three CSPs (AlinCSP4-6) from Adelphocoris lineolatus, their distinct chemosensillum distribution as well as ligand binding capability thus providing the evidence for the possible roles that they could play in semiochemical detection of the plant bug A. lineolatus. The results of qRT-PCR and western blot assay clearly showed that all of these three CSPs are highly expressed in the adult antennae, the olfactory organ of insects. Further cellular investigation of their immunolocalization revealed their dynamic protein expression profiles among different types of antennal sensilla. In a fluorescence competitive binding assay, the selective ligand binding was observed for AlinCSP4-6. In ad`dition, a cooperative interaction was observed between two co-expressed CSPs resulting in an increase of the binding affinities by a mixture of AlinCSP5 and AlinCSP6 to terpenoids which do not bind to individual CSPs. These findings in combination with our previous data for AlinCSP1-3 indicate a possible functional differentiation of CSPs in the A. lineolatus olfactory system.


Assuntos
Heterópteros/metabolismo , Proteínas de Insetos/metabolismo , Ligantes , Receptores Odorantes/metabolismo , Sensilas/metabolismo , Sequência de Aminoácidos , Animais , Antenas de Artrópodes/metabolismo , Antenas de Artrópodes/patologia , Clonagem Molecular , Feminino , Proteínas Imobilizadas/química , Proteínas Imobilizadas/metabolismo , Imuno-Histoquímica , Proteínas de Insetos/genética , Masculino , Medicago sativa/parasitologia , Dados de Sequência Molecular , Feromônios/química , Feromônios/metabolismo , Ligação Proteica , Receptores Odorantes/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA