Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
BMC Genomics ; 24(1): 679, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37950158

RESUMO

BACKGROUND: The deep-sea snail Phymorhynchus buccinoides belongs to the genus Phymorhynchus (Neogastropoda: Raphitomidae), and it is a dominant specie in the cold seep habitat. As the environment of the cold seep is characterized by darkness, hypoxia and high concentrations of toxic substances such as hydrogen sulfide (H2S), exploration of the diverse fauna living around cold seeps will help to uncover the adaptive mechanisms to this unique habitat. In the present study, a chromosome-level genome of P. buccinoides was constructed and a series of genomic and transcriptomic analyses were conducted to explore its molecular adaptation mechanisms to the cold seep environments. RESULTS: The assembled genome size of the P. buccinoides was approximately 2.1 Gb, which is larger than most of the reported snail genomes, possibly due to the high proportion of repetitive elements. About 92.0% of the assembled base pairs of contigs were anchored to 34 pseudo-chromosomes with a scaffold N50 size of 60.0 Mb. Compared with relative specie in the shallow water, the glutamate regulative and related genes were expanded in P. buccinoides, which contributes to the acclimation to hypoxia and coldness. Besides, the relatively high mRNA expression levels of the olfactory/chemosensory genes in osphradium indicate that P. buccinoides might have evolved a highly developed and sensitive olfactory organ for its orientation and predation. Moreover, the genome and transcriptome analyses demonstrate that P. buccinoides has evolved a sulfite-tolerance mechanism by performing H2S detoxification. Many genes involved in H2S detoxification were highly expressed in ctenidium and hepatopancreas, suggesting that these tissues might be critical for H2S detoxification and sulfite tolerance. CONCLUSIONS: In summary, our report of this chromosome-level deep-sea snail genome provides a comprehensive genomic basis for the understanding of the adaptation strategy of P. buccinoides to the extreme environment at the deep-sea cold seeps.


Assuntos
Ecossistema , Caramujos , Animais , Caramujos/genética , Cromossomos , Hipóxia , Sulfitos , Filogenia
2.
Fish Shellfish Immunol ; 126: 141-149, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35561949

RESUMO

Cortisol is the main stress hormone that plays crucial roles in energy metabolism and immune response in vertebrates. In the present study, the homologues of 11ß-hydroxysteroid dehydrogenase type 1 (designated Cg11ß-HSD1) and 5α-reductase 1 (designated Cg5αR1), the key enzymes related to cortisol metabolism, were identified from Pacific oyster Crassostrea gigas. The Cg11ß-HSD1 harbored a conserved SDR domain, and Cg5αR1 contained a Steroid_dh domain and three transmembrane domains. The mRNA transcripts of Cg11ß-HSD1 and Cg5αR1 were constitutively expressed in all the examined tissues of oysters, with the highest expression level in haemocytes and labial palp, respectively. After acute high temperature stress (28 °C), the mRNA expression level of Cg11ß-HSD1 in hepatopancreas significantly up-regulated at 6 h and 12 h, and that of Cg5αR1 significantly up-regulated at 6 h, compared with the Blank group (11 °C). The concentration of cortisol and glucose, as well as the activities of superoxide dismutase (SOD) and catalase (CAT) in hepatopancreas all significantly up-regulated after acute high temperature stress, while the glycogen concentration in adductor muscle decreased significantly at 6 h and 12 h. After the blockage of Cg11ß-HSD1 with metyrapone, the cortisol concentration and the activities of SOD and CAT significantly decreased after acute high temperature stress, the glucose concentration in hepatopancreas significantly increased at 24 h, and the glycogen concentration in adductor muscle significantly increased at 6 h. These results collectively suggested that cortisol played a crucial role in regulating glucose metabolism and oxidative response in oysters upon acute high temperature stress.


Assuntos
Crassostrea , Animais , Glucose/metabolismo , Glicogênio/metabolismo , Hidrocortisona/metabolismo , Estresse Oxidativo , RNA Mensageiro/metabolismo , Superóxido Dismutase/metabolismo , Temperatura
3.
Fish Shellfish Immunol ; 119: 318-328, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34655740

RESUMO

The myxovirus resistance (Mx) proteins belong to interferon (IFN)-induced dynamin GTPase and play a pivotal role in the inhibition of replication of numerous viruses. In the present study, an Mx homologue (designated as CgMx1) was identified from oyster Crassostrea gigas. The open reading frame (ORF) of CgMx1 cDNA was of 1689 bp encoding a peptide of 562 amino acid residues. There was an N-terminal dynamin GTPase domain in the predicted peptide, which consisted of a tripartite GTP-binding motif (GDXXSGKS, DLPG and T/NKXD). The deduced amino acid sequence of CgMx1 shared 30-39% similarity with other Mx family members. And CgMx1 was clustered with Mx from H. discus, and then assigned into the invertebrate branch of the phylogenetic tree. The mRNA transcripts of CgMx1 were constitutively distributed in all the tested tissues, with the highest level in haemocytes (1342.45-fold of labial palps, p < 0.05). The mRNA expression of CgMx1 in haemocytes was significantly up-regulated to the highest level at 6 h (13.14-fold, p < 0.001) after poly (I:C) treatment and at 24 h (66.28-fold, p < 0.001) after recombinant IFN-like protein (rCgIFNLP) stimulation, respectively. CgMx1 protein was found to distribute in both the cytoplasm and nucleus of haemocytes. In the oysters with CgIFNLP and signal transducer and activator of transcription (CgSTAT) silenced by RNAi, the mRNA expression of CgMx1 decreased significantly in the haemocytes at 12 h after poly (I:C) stimulation, which was 0.02-fold and 0.04-fold of that in EGFP-RNAi oysters (p < 0.001), respectively. Meanwhile, EMSA assay revealed that CgSTAT was able to transactivate CgMx1 promoter through directly binding to its interferon-stimulated response element (ISRE) and gamma interferon activation site (GAS). The above results indicated that CgMx1 participated in the immune response of C. gigas through the signal pathway mediated by CgIFNLP and CgSTAT.


Assuntos
Crassostrea , Orthomyxoviridae , Animais , Crassostrea/genética , Crassostrea/metabolismo , GTP Fosfo-Hidrolases , Regulação da Expressão Gênica , Hemócitos/metabolismo , Interferons/metabolismo , Orthomyxoviridae/metabolismo , Fagocitose , Filogenia , Poli I-C/farmacologia , RNA Mensageiro
4.
Fish Shellfish Immunol ; 99: 594-602, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32109614

RESUMO

The programmed cell death protein 4 (PDCD4) is a newly defined transcriptional and translational inhibitor, which plays a key role in regulating the synthesis of inflammatory cytokines in vertebrates species. In the present study, the full-length cDNA of PDCD4 from oyster Crassostrea gigas (designed as CgPDCD4) was identified to explore its possible involvement in immune response. The open reading frame of pdcd4 gene was of 1344 bp encoding a polypeptide of 447 amino acids with two conserved MA-3 domains. The deduced amino acid sequence of CgPDCD4 shared 60.18% similarity with PDCD4 from Mizuhopecten yessoensis. The mRNA transcripts of CgPDCD4 could be detected in all the tested tissues with a higher expression level in adductor muscle and hemocytes. The mRNA expression of CgPDCD4 in hemocytes was significantly down-regulated at 3 h and 6 h (0.61-fold and 0.42-fold of that in PBS group, p < 0.01, respectively) after LPS stimulation. In hemocytes, CgPDCD4 protein was found to be mainly located in the cytoplasm. After the mRNA expression of CgPDCD4 in hemocytes was knocked down (0.40-fold of that in EGFP-RNAi group) by CgPDCD4 dsRNA (dsCgPDCD4) injection, the CgIL17-5 transcripts were up-regulated (20.11-fold of that in PBS group, p < 0.01) post LPS stimulation, which was significantly higher than that in dsEGFP-injected oysters (7.06-fold of that in PBS group, p < 0.01). Meanwhile, the nuclear translocation of CgRel (homologue of Rel/NF-κB) was significantly enhanced (about 1.36-fold of that in PBS group, p < 0.01), but it was similar as that in EGFP-RNAi group (about 1.52-fold of that in PBS group, p < 0.01) after LPS stimulation. All the results suggested that CgPDCD4 in oysters played the same role as PDCD4 of vertebrates in negatively regulating the production of interleukin in immune response, but the underpinning signal pathway was not conserved during evolution.


Assuntos
Proteínas Reguladoras de Apoptose/genética , Crassostrea/genética , Crassostrea/imunologia , Hemócitos/imunologia , Imunidade Inata/genética , Interleucina-17/genética , Animais , Proteínas Reguladoras de Apoptose/imunologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Interleucina-17/imunologia , Lipopolissacarídeos , Fases de Leitura Aberta , Transdução de Sinais , Regulação para Cima
5.
Fish Shellfish Immunol ; 98: 334-341, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31881330

RESUMO

Tumor necrosis factors (TNFs) are a group of multifunctional inflammatory cytokines involved in various pathological and immune processes. Recently, a few primitive TNFs have been characterized from molluscs, which play important roles in modulating cell apoptosis, phagocytosis and production of immune-related enzymes. In the present study, a novel TNF (named as CgTNF-2) with the activity to mediate antibacterial response was identified from the Pacific oyster Crassostrea gigas. The open reading frame of CgTNF-2 was of 783 bp encoding a putative polypeptide of 261 amino acids with a typical TNF domain. The deduced amino acid sequence of CgTNF-2 shared high identity with that of TNFs previously identified from other molluscs, such as 96.1% identity with that in oyster C. hongkongensis, 33.7% identity with that in scallop Mizuhopecten yessoensis and 33.0% identity with CgTNF-1 in oyster C. gigas. There were two distinct TNF branches of vertebrate and invertebrate in the phylogenetic tree, and CgTNF-2 was firstly clustered with TNF-14 from C. hongkongensis, and then clustered with other molluscan TNFs. The mRNA transcripts of CgTNF-2 were widely expressed in various oyster tissues, with the highest expression level in hemocytes. The expression level of CgTNF-2 increased significantly at 6 h (2.45-fold and 6.20-fold, respectively, p < 0.05) after peptidoglycan and lipopolysaccharides treatments, and peaked at 12 h (31.86-fold and 7.90-fold, respectively, p < 0.05). The recombinant protein of CgTNF-2 (rCgTNF-2) inhibited the growth of human alveolar basal epithelial (A549) cells at a concentration of 800 ng/mL. After the oysters received an injection of rCgTNF-2, the serum from those oysters exhibited significantly higher antibacterial activity compared to that from control group, evidenced by inhibiting the growth of Vibrio splendidus. Moreover, the lysozyme activity as well as the contents of nitric oxide in the oyster serum also increased significantly. The above results collectively suggested that CgTNF-2 was a novel member of bivalve TNF-α family, which could prompt the antibacterial activity by inducing the lysozyme activity and the production of nitric oxide in the innate immune response of oyster.


Assuntos
Atividade Bactericida do Sangue , Crassostrea/imunologia , Muramidase/biossíntese , Óxido Nítrico/biossíntese , Fator de Necrose Tumoral alfa/metabolismo , Células A549 , Sequência de Aminoácidos , Animais , Atividade Bactericida do Sangue/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Clonagem Molecular , Crassostrea/classificação , Crassostrea/genética , Hemócitos/metabolismo , Humanos , Cinética , Muramidase/sangue , Óxido Nítrico/sangue , Filogenia , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacologia , Distribuição Tecidual , Fator de Necrose Tumoral alfa/química , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/farmacologia , Vibrio/fisiologia
6.
Mar Drugs ; 18(4)2020 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-32244466

RESUMO

The world-famous Antarctic krill (Euphausia superba) plays a fundamental role in the Antarctic food chain. It resides in cold environments with the most abundant biomass to support the Antarctic ecology and fisheries. Here, we performed the first genome survey of the Antarctic krill, with genomic evidence for its estimated genome size of 42.1 gigabases (Gb). Such a large genome, however, is beyond our present capability to obtain a good assembly, although our sequencing data are a valuable genetic resource for subsequent polar biomedical research. We extracted 13 typical protein-coding gene sequences of the mitochondrial genome and analyzed simple sequence repeats (SSRs), which are useful for species identification and origin determination. Meanwhile, we conducted a high-throughput comparative identification of putative antimicrobial peptides (AMPs) and antihypertensive peptides (AHTPs) from whole-body transcriptomes of the Antarctic krill and its well-known counterpart, the whiteleg shrimp (Penaeus vannamei; resident in warm waters). Related data revealed that AMPs/AMP precursors and AHTPs were generally conserved, with interesting variations between the two crustacean species. In summary, as the first report of estimated genome size of the Antarctic krill, our present genome survey data provide a foundation for further biological research into this polar species. Our preliminary investigations on bioactive peptides will bring a new perspective for the in-depth development of novel marine drugs.


Assuntos
Euphausiacea/genética , Genoma Mitocondrial/genética , Repetições de Microssatélites/genética , Animais , Regiões Antárticas , Anti-Hipertensivos/isolamento & purificação , Peptídeos Catiônicos Antimicrobianos/genética , Peptídeos Catiônicos Antimicrobianos/isolamento & purificação , Produtos Biológicos/isolamento & purificação , Perfilação da Expressão Gênica , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Sequenciamento Completo do Genoma
7.
Fish Shellfish Immunol ; 84: 451-457, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30315860

RESUMO

Giant clams are one of the most important animals in coral reef ecosystem, and its growth and reproduction are being threatened by heat stress due to global warming. In the present study, the symbiont density, the crucial enzyme activities and the transcriptome were investigated in the outer mantle of giant clam Tridacna crocea after the acute exposure of high temperature. The density of symbiotic zooxanthellae decreased significantly during 12-24 h, with the minimum level (7.75 × 105 cell cm-2, p < 0.05) at 12 h after heat stress. The activities of superoxide dismutase in the heat stress group was significantly lower than that in the control group at 24 h after heat stress, while no significant change in the activities of catalase was observed during the entire stress process. The activation level of caspase3 began to increase significantly at 12 h (1.22-fold, p < 0.05), and reached the highest level at 24 h (1.38-fold, p < 0.05) after heat stress. Six paired-end libraries were sequenced in two groups, including the heat stress and control group at 12 h after heat stress. Through the assembling of 187,116,632 paired-end reads with lengths of 2 × 150 bp, a total of 26,676 genes were obtained which derived from giant clam. Bioinformatics analysis revealed 47 significantly upregulated and 88 significantly downregulated genes at 12 h after the treatment. There were 12 overrepresented GO terms for significantly upregulated genes, mostly related to unfolded protein binding and ATP binding, whereas no GO term was overrepresented for significantly downregulated genes. These results collectively suggest high temperature could induce excessive oxidative stress through the repressed antioxidant ability, the apoptosis activated by the unfolded protein response, and further the collapse of the symbiosis between host and symbiont, which has been threatening the growth and reproduction of the giant clam T. crocea.


Assuntos
Apoptose , Bivalves/fisiologia , Dinoflagellida/fisiologia , Temperatura Alta/efeitos adversos , Estresse Oxidativo , Simbiose , Animais
8.
Fish Shellfish Immunol ; 89: 228-236, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30936046

RESUMO

The Runx family is a kind of heteromeric transcription factors, which is defined by the presence of a runt domain. As transcriptional regulator during development and cell fate specification, Runx is best known for its critical roles in hematopoiesis. In the present study, a Runx transcription factor (designed as CgRunx) was identified and characterized from the oyster Crassostrea gigas. The complete coding sequence of CgRunx was of 1638 bp encoding a predicted polypeptide of 545 amino acids with one conserved runt domain, which shared high similarity with other reported Runx proteins. CgRunx was highly expressed in hemocytes, gill and mantle both at the protein and nucleic acid levels. CgRunx protein was localized specifically in the cell nuclei of hemocytes, and distributed at the tubule lumen of gill filament. During the larval developmental stages, the mRNA transcripts of CgRunx gradually increased after fertilization, reached to a relative high level at the 8 cell embryos and the blastula stage of 2-4 hpf (hours post fertilization) (about 40-fold), and peaked at early trochophore larvae (10 hpf) (about 60-fold). Whole-mount immunofluorescence assay further revealed that the abundant immunofluorescence signals of CgRunx distributed through the whole embryo at blastula stage (5 hpf), and progressively reduced with the development to a ring structure around the dorsal region in trochophore larvae (10 hpf). Scattered positive immunoreactivity signals finally appeared in the velum region of D-veliger larvae. After LPS and Vibrio splendidus stimulations, the expression levels of CgRunx mRNA in hemocytes were up-regulated significantly compared with that in the control (0 h), which were 2.98- and 2.46-fold (p < 0.05), 2.67- and 1.5-fold (p < 0.05), 2.36- and 1.38-fold (p < 0.05) at 3 h, 6 h and 12 h, respectively. These results collectively suggested that CgRunx involved in immune response and might participate in larvae hematopoiesis in oyster.


Assuntos
Subunidades alfa de Fatores de Ligação ao Core/genética , Subunidades alfa de Fatores de Ligação ao Core/imunologia , Crassostrea/genética , Crassostrea/imunologia , Regulação da Expressão Gênica/imunologia , Imunidade Inata/genética , Sequência de Aminoácidos , Animais , Subunidades alfa de Fatores de Ligação ao Core/química , Perfilação da Expressão Gênica , Alinhamento de Sequência
9.
Fish Shellfish Immunol ; 84: 920-926, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30385248

RESUMO

The globular C1q domain containing (C1qDC) proteins are a family of versatile pattern recognition receptors (PRRs) to bind various ligands by their globular C1q (gC1q) domain. In the present study, a novel globular C1qDC (CgC1qDC-7) was characterized from Pacific oyster Crassostrea gigas. The open reading frame of CgC1qDC-7 was of 555 bp, encoding a polypeptide of 185 amino acids. Phylogenetic analysis indicated that CgC1qDC-7 shared high homology with C1qDCs from Crassostrea virginica, Mytilus galloprovincialis, and Mizuhopecten yessoensis. The mRNA transcripts of CgC1qDC-7 were widely expressed in all the tested tissues including mantle, gonad, gills, adductor muscle, hemocytes, hepatopancreas and labial palps, with the highest expression level in hemocytes and gills. The recombinant protein of CgC1qDC-7 (rCgC1qDC-7) exhibited binding activity towards Gram-negative bacteria (Vibrio splendidus, V. anguillarum, Escherichia coli, V. alginolyticus, and Aeromonas hydrophila), Gram-positive bacteria (Micrococcus luteus and Staphylococcus aureus) and fungi (Pichia pastoris and Yarrowia lipolytica), and displayed strongest binding affinity towards Gram-negative bacteria V. splendidus and V. anguillarum. It also exhibited affinity to vital pathogen-associated molecular patterns (PAMPs), such as lipopolysaccharide (LPS), peptidoglycan (PGN), mannan (MAN) and Poly (I:C) with high affinity towards LPS and PGN, and low affinity to MAN and Poly (I:C). These results collectively indicated that CgC1qDC-7 was a novel PRR in C. gigas with high binding affinity towards LPS and PGN as well as Gram-negative bacteria.


Assuntos
Complemento C1q/genética , Complemento C1q/imunologia , Crassostrea/genética , Crassostrea/imunologia , Regulação da Expressão Gênica/imunologia , Imunidade Inata/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Complemento C1q/química , Complemento C1q/metabolismo , Perfilação da Expressão Gênica , Bactérias Gram-Negativas/fisiologia , Bactérias Gram-Positivas/fisiologia , Filogenia , Receptores de Reconhecimento de Padrão/química , Receptores de Reconhecimento de Padrão/genética , Receptores de Reconhecimento de Padrão/metabolismo , Saccharomycetales/fisiologia , Alinhamento de Sequência
10.
Fish Shellfish Immunol ; 87: 638-649, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30753917

RESUMO

Integrins are an important family of cell receptors that can bind foreign particles and promote cell phagocytosis after they are activated. In the present study, a novel ß integrin was identified from pacific oyster Crassostrea gigas with an extracellular domain, a single transmembrane segment, and a short cytoplasmic domain. It was phylogenetically clustered with phagocytosis-related insecta ßV, and designated as CgßV. CgßV shared a conserved NPX[Y/F] motif related to integrin activation with other phagocytosis-related ß integrins. The mRNA transcripts of CgßV were widely detected in oyster tissues including hemocytes, gonad, adductor muscle, mantle, gill, and hepatopancreas, and the expression level in hemocytes was significantly up-regulated at 12 h after lipopolysaccharide (LPS) stimulation (p < 0.05), which was 2.29-fold higher than that in the control group. CgßV proteins were mainly observed on the hemocytes surface. The oyster hemocytes were found to bind fluorescein isothiocyanate (FITC)-labeled Arg-Gly-Asp-containing peptides (RGDCPs), and the binding capability was significantly up-regulated with the peak percentage of 37.6% at 12 h post LPS stimulation, which was higher than that in the control group (8.8%, p < 0.05), suggesting the activation of RGD-binding integrins on oyster hemocytes surface. The label-free RGDCPs and anti-CgßV antibody inhibited the binding capability of hemocytes towards FITC-labeled RGDCPs, which were significant lower in RGD blocking group (7.4%, p < 0.05) and anti-CgßV blocking group (22.1%, p < 0.05) than that in the control group (37.6%), indicating that CgßV could be a RGD-binding integrin. Phagocytosis assay demonstrated that LPS could enhance the phagocytosis of hemocytes towards Escherichia coli and fluorescent beads with the phagocytic rate (PR) of 18.3% and 17.4%, and phagocytic index (PI) of 5.29 and 37.71, respectively, which were significant higher than that in the control group (11.0% and 3.65 for E. coli, 9.8% and 29.26 for fluorescent beads, respectively, p < 0.05). In addition, both the label-free RGDCPs and anti-CgßV antibody significantly hindered the phagocytosis of hemocytes towards E. coli and fluorescent beads. After the E. coli and fluorescent beads were opsonized by oyster serum, the label-free RGDCPs still inhibited the phagocytosis of hemocytes towards them, while the anti-CgßV antibody could only inhibit the phagocytosis of hemocytes towards E. coli, suggesting that only the activated CgßV was involved in the enhancing phagocytosis for bacteria in oyster. Moreover, the key components of conserved integrin-mediated phagocytosis pathway including GTPases, talin proteins, Ca2+ and cAMP were all induced by LPS in hemocytes of oyster. All these results suggested that the activated CgßV enhanced RGD-binding and phagocytic capabilities of hemocytes, shedding lights on the mechanisms of integrin-mediated phagocytosis in mollusks.


Assuntos
Crassostrea/fisiologia , Hemócitos/imunologia , Cadeias beta de Integrinas/genética , Oligopeptídeos/metabolismo , Fagocitose , Animais , Crassostrea/genética , Crassostrea/imunologia , Cadeias beta de Integrinas/metabolismo
11.
Fish Shellfish Immunol ; 93: 1084-1092, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31449980

RESUMO

As a family of negatively feedback regulating factors, the suppressor of cytokine signaling (SOCS) can depress cytokine signal transduction, and eventually modulate growth, development, differentiation, and immune response. In the present study, a SOCS homologue (designated as CgSOCS6) was identified from oyster Crassostrea gigas. The open reading frame of CgSOCS6 cDNA was of 1167 bp encoding a peptide of 388 amino acid residues with a central Src homology 2 (SH2) domain, a conserved C-terminal SOCS box, and a nucleus localization sequence (NLS) in its N-terminus. The deduced amino acid sequence of CgSOCS6 shared 37.9-45.5% similarity with other SOCS6/7 family members. In the unrooted phylogenetic tree, CgSOCS6 was clustered with EsSOCS6 from Chinese mitten crab Eriocheir sinensis and assigned into the SOCS6/7 group. The mRNA transcripts of CgSOCS6 were constitutively distributed in all the tested tissues, with the highest level in hemocytes. After lipopolysaccharide (LPS) stimulation, the mRNA expression of CgSOCS6 in hemocytes was significantly up-regulated to the highest level at 6 h (8.48-fold compared to the control group, p < 0.01), and then kept at a relatively higher level from 12 h to 72 h. CgSOCS6 protein could be translocated into the hemocyte nucleus after LPS stimulation. The mRNA expressions of interleukin 17-4 (CgIL17-4), CgIL17-5, and defensin (CgDefh1) in the hemocytes of CgSOCS6-knockdown oysters increased significantly (2.55-fold, 2.68-fold, 4.68-fold of that in EGFP-RNAi oysters, p < 0.05, p < 0.05, p < 0.001, respectively) after LPS stimulation. These findings suggested that CgSOCS6 was involved in the oyster immune response by regulating the expressions of CgIL17-4, CgIL17-5, and CgDefh1.


Assuntos
Crassostrea/genética , Crassostrea/imunologia , Regulação da Expressão Gênica/imunologia , Imunidade Inata/genética , Proteínas Supressoras da Sinalização de Citocina/genética , Proteínas Supressoras da Sinalização de Citocina/imunologia , Sequência de Aminoácidos , Animais , Defensinas/genética , Defensinas/imunologia , Perfilação da Expressão Gênica , Interleucina-17/genética , Interleucina-17/imunologia , Lipopolissacarídeos/farmacologia , Filogenia , Alinhamento de Sequência , Proteínas Supressoras da Sinalização de Citocina/química
12.
Fish Shellfish Immunol ; 88: 480-488, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30877062

RESUMO

As one of the most important neuropeptides identified only in invertebrates of Mollusca, Annelida and Arthropoda, FMRFamide (Phe-Met-Arg-Phe-NH2) involves in multiple physiological processes, such as mediating cardiac frequency and contraction of somatic and visceral muscles. However, its modulatory role in the immune defense has not been well understood. In the present study, an FMRFamide precursor (designed as CgFMRFamide) was identified in oyster Crassostrea gigas, which could be processed into nineteen FMRFamide peptides. Phylogenetic analysis revealed that CgFMRFamide shared high similarity with other identified FMRFamides in mollusks. The mRNA of CgFMRFamide was mainly concentrated in the tissues of visceral ganglia, hepatopancreas and hemocytes, and a consistent distribution of FMRFamide peptide was confirmed by immunohistochemistry and immunocytochemistry assays. The mRNA expression level of CgFMRFamide in hemocytes was significantly up-regulated after immune stimulation with lipopolysaccharide (LPS). After the concentration of FMRFamide was increased by exogenous injection, the in vivo expressions of pro-inflammatory cytokine CgIL17-5, as well as the apoptosis-related CgCaspase-1 and CgCaspase-3 in hemocytes were promptly increased (p < 0.05), but the concentration of signal molecule nitric oxide (NO) was significantly down-regulated (p < 0.05). Meanwhile, an increased phosphorylation of p38 MAP kinase in hemocytes was also detected after the FMRFamide injection. These results collectively demonstrated that the conserved FMRFamide could not only respond to immune stimulation, but also regulate the expression of immune effectors and apoptosis-related genes, which might be mediated by p38 MAP kinase pathway, thereby effectively involved in clearing pathogens and maintaining homeostasis in oysters.


Assuntos
Crassostrea/imunologia , FMRFamida/imunologia , Fatores Imunológicos/imunologia , Animais , Apoptose , Caspases/metabolismo , Citocinas/metabolismo , FMRFamida/administração & dosagem , FMRFamida/genética , Hemócitos/efeitos dos fármacos , Hemócitos/imunologia , Imunidade Inata , Fatores Imunológicos/administração & dosagem , Fatores Imunológicos/genética , Lipopolissacarídeos , Óxido Nítrico/metabolismo , Fosforilação/efeitos dos fármacos , Filogenia , RNA Mensageiro , Regulação para Cima
13.
Fish Shellfish Immunol ; 91: 325-332, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31128297

RESUMO

Autophagy, a highly conserved intracellular degradation system, is involved in numerous processes in vertebrate and invertebrate, such as cell survival, ageing, and immune responses. However, the detailed molecular mechanism of autophagy and its immune regulatory role in bivalves are still not well understood. In the present study, an autophagy-related protein ATG10 (designated as CgATG10) was identified from Pacific oyster Crassostrea gigas. The open reading frame of CgATG10 cDNA was of 621 bp, encoding a polypeptide of 206 amino acid residues with an Autophagy_act_C domain (from 96 to 123 amino acid), which shared high homology with that from C. virginica and Octopus bimaculoides. The mRNA transcripts of CgATG10 were widely expressed in all the tested tissues including mantle, gonad, gills, hemocytes and hepatopancreas, with the highest expression level in mantle. After the stimulation with poly (I:C), the mRNA expression level of CgATG10 in the mantle of oysters was significantly up-regulated (4.92-fold of that in Blank group, p < 0.05), and the LC3-conversion from LC3-I to LC3-II (LC3-II/LC3-I) also increased. After an additional injection of dsRNA to knock-down the expression of CgATG10 (0.33-fold and 0.10-fold compared respectively with Blank group and dsGFP group, p < 0.05), the downstream conversion of CgLC3 was inhibited significantly compared with that of the control dsGFP group, while the expression level of autophagy-initiator CgBeclin1 did not change significantly. In addition, the mRNA transcripts of interferon regulatory factor CgIRF-1 increased significantly in CgATG10-knockdown oysters at 12 h post poly (I:C) stimulation. All the results indicated that CgATG10 might participate in the immune response against poly (I:C) by regulating autophagosome formation and interferon system in oysters.


Assuntos
Autofagossomos/imunologia , Proteínas Relacionadas à Autofagia/genética , Proteínas Relacionadas à Autofagia/imunologia , Crassostrea/genética , Crassostrea/imunologia , Regulação da Expressão Gênica/imunologia , Imunidade Inata/genética , Sequência de Aminoácidos , Animais , Proteínas Relacionadas à Autofagia/química , Perfilação da Expressão Gênica , Interferons/genética , Interferons/metabolismo , Filogenia , Poli I-C/farmacologia , Alinhamento de Sequência
14.
Fish Shellfish Immunol ; 89: 207-216, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30936045

RESUMO

Beclin-1, the mammalian ortholog of yeast Atg6, plays essential roles in the regulation of various processes, including autophagy, apoptosis, embryonic development and immune responses in vertebrates. However, the information about Beclin-1 in invertebrates especially in crustaceans is still very limited. In the present study, a novel Beclin-1 (designated as EsBeclin-1) was identified from Chinese mitten crab Eriocheir sinensis. The open reading frame of EsBeclin-1 cDNA was of 1,275 bp, encoding a typical APG6 domain. The deduced amino acid sequence of EsBeclin-1 shared high similarity ranging from 42.9% to 63.6% with the previously identified Beclins. In the phylogenetic tree, EsBeclin-1 was firstly clustered with Drosophila melanogaster Atg6 and then assigned into the branch of invertebrate Beclin-1. The mRNA transcripts of EsBeclin-1 were highly expressed in hepatopancreas, hemocytes and gill. After lipopolysaccharide (LPS) and Aeromonas hydrophila stimulations, the relative mRNA expression of EsBeclin-1 in hemocytes was significantly increased from 3 to 24 h with the peak level of 4.70-fold (p < 0.01) and 2.91-fold (p < 0.01) at 6 h, respectively. EsBeclin-1 protein was diffusely distributed in the cytoplasm of crab hemocytes under normal conditions, whereas it displayed predominantly punctuate distribution after LPS stimulation. After EsBeclin-1 was interfered with specific EsBeclin-1-dsRNA, the mRNA transcripts of some antimicrobial peptides, including EsALF2, EsLYZ, EsCrus and EsCrus2 in crab hemocytes were significantly decreased at 6 h post LPS stimulation. These results implicated that EsBeclin-1 played a role in regulating the antimicrobial peptides expressions in the immune responses of E. sinensis.


Assuntos
Proteína Beclina-1/genética , Proteína Beclina-1/imunologia , Braquiúros/genética , Braquiúros/imunologia , Regulação da Expressão Gênica/imunologia , Imunidade Inata/genética , Aeromonas hydrophila/fisiologia , Sequência de Aminoácidos , Animais , Proteínas de Artrópodes/química , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/imunologia , Sequência de Bases , Proteína Beclina-1/química , Perfilação da Expressão Gênica , Lipopolissacarídeos/farmacologia , Filogenia , Alinhamento de Sequência
15.
Fish Shellfish Immunol ; 72: 502-509, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29155031

RESUMO

Suppressor of cytokine signaling (SOCS) is a family of cytokine-inducible negative regulators of cytokine signaling and it plays a crucial role in various physiological processes. In the present study, the full-length cDNA of a SOCS (designated as EsSOCS6) was cloned from Chinese mitten crab Eriocheir sinensis. The open reading frame of EsSOCS6 cDNA was of 1266 bp, which encoded a polypeptide of 421 amino acid residues. There were two typically conserved SOCS family domains in EsSOCS6, including a central Src homology 2 (SH2) domain and a C-terminal SOCS box. The deduced amino acid sequence of EsSOCS6 shared 72-76% similarity with those of other SOCS6 family members. EsSOCS6 mRNA was constitutively expressed in all the examined tissues with higher expression levels in the immune-related tissues, such as hepatopancreas, hemocytes and gill. The mRNA expression levels of the EsSOCS6 in hemocytes were significantly up-regulated after the stimulations with lipopolysaccharide (LPS), Aeromonas hydrophila and polyinosinic-polycytidylic acid (poly (I:C)). The mRNA expressions of threonine/serine protein kinase (EsAkt) and EsRelish were dramatically declined after EsSOCS6 was interfered by dsRNA. Collectively, these results demonstrated that EsSOCS6 might regulate the activation of the NF-κB signaling pathway and play an important role in the innate immune responses of E. sinensis.


Assuntos
Braquiúros/genética , Braquiúros/imunologia , Regulação da Expressão Gênica/imunologia , Imunidade Inata/genética , Proteínas Supressoras da Sinalização de Citocina/genética , Proteínas Supressoras da Sinalização de Citocina/imunologia , Aeromonas hydrophila/fisiologia , Sequência de Aminoácidos , Animais , Proteínas de Artrópodes/química , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/imunologia , Perfilação da Expressão Gênica , Lipopolissacarídeos/farmacologia , Filogenia , Poli I-C/farmacologia , Alinhamento de Sequência , Proteínas Supressoras da Sinalização de Citocina/química
16.
Fish Shellfish Immunol ; 79: 218-227, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29772373

RESUMO

C-type lectins (CTLs) are Ca2+ dependent carbohydrate-binding proteins that share structural homology in their carbohydrate-recognition domains (CRDs). In the present study, a novel CTL was identified from sea cucumber Apostichopus japonicus (named as AjCTL-2). The deduced amino acid sequence of AjCTL-2 was homologous to CTLs from other animals with the identities ranging from 33% to 40%. It contained a canonical signal peptide at the N-terminus, a low density lipoprotein receptor class A (LDLa), a C1r/C1s/Uegf/bone morphogenetic protein 1 (CUB), and a CRD with two motifs Glu-Pro-Asn (EPN) and Trp-Asn-Asp (WND) in Ca2+ binding site 2. The mRNA transcripts of AjCTL-2 were extensively expressed in all the tested tissues including respiratory tree, muscle, gut, coelomocyte, tube-foot, body wall and gonad, and the highest expression level of AjCTL-2 in coelomocyte was about 4.2-fold (p < 0.05) of that in body wall. The mRNA expression level of AjCTL-2 in coelomocyte increased significantly after Vibrio splendidus stimulation, and dramatically peaked at 12 h, which was 206.4-fold (p < 0.05) of that in control group. AjCTL-2 protein was mainly detected in cytoplasm of coelomocyte by immunofluorescence. The recombinant AjCTL-2 (rAjCTL-2) displayed binding activity to d-galactose independent of Ca2+, while the binding activity to other tested pathogen-associated molecular patterns (PAMPs) including lipopolysaccharide (LPS), peptidoglycan (PGN), and mannose (Man) could not be detected. Surface plasmon resonance (SPR) analysis further revealed the high binding specificity and moderate binding affinity of rAjCTL-2 to d-galactose (KD = 4.093 × 10-6 M). After rAjCTL-2 was blocked by its polyclonal antibody, the binding activity to d-galactose could not be detected by using a blocking ELISA (B-ELISA). Moreover, rAjCTL-2 could bind various microorganisms including V. splendidus, V. anguillarum, Staphylococcus aureus, Bifidobacterium breve and Yarrowia lipolytica with the strongest binding activity to B. breve. These results collectively suggested that AjCTL-2 was a member of CTL superfamily (CTLs) with preferential binding of d-galactose and participated in the immune response of sea cucumber.


Assuntos
Regulação da Expressão Gênica/imunologia , Imunidade Inata/genética , Lectinas Tipo C/genética , Lectinas Tipo C/imunologia , Stichopus/genética , Stichopus/imunologia , Sequência de Aminoácidos , Animais , Fenômenos Fisiológicos Bacterianos , Sequência de Bases , Galactose/metabolismo , Perfilação da Expressão Gênica , Lectinas Tipo C/química , Moléculas com Motivos Associados a Patógenos/farmacologia , Filogenia , Domínios Proteicos , Alinhamento de Sequência
17.
FASEB J ; 30(10): 3527-3540, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27402673

RESUMO

NOS is the key component of the NO system, which plays an indispensable role in many physiologic and immunologic processes; however, the process that underlies the activation of ancient NOSs and their functions remains unclear. Expression of Crassostrea gigas NOS (CgNOS) mRNA in hemocytes was examined after stimulating oysters with LPS and TNF-α. Expression level of CgNOS mRNA was increased significantly, by 2.61-fold (P < 0.05), at 24 h poststimulation. A positive CgNOS signal was detected via immunoprecipitation, and only one protein was detected in oyster hemocytes. Shifting and supershifting bands were observed in EMSAs between the CgNOS promoter and the transcription factors CgNF-κB1 and Cg-signal transducer and activator of transcription (STAT). CgNF-κB1 was detected in the nucleus only at 12 h, whereas CgSTAT was observed in the cytoplasm and nucleus at 12 and 24 h. Expression levels of tyrosine-protein kinase receptor Tie-1, phosphatidylinositide phosphatase SAC2, phosphatidylinositol-4-phosphate 5-kinase type-1α, diacylglycerol kinase θ, LPS-induced TNF-α factor-like protein, cAMP-dependent transcription factor-2, NF-κB1, and STAT6 were significantly elevated in a transcriptome analysis after 12 h of LPS and TNF-α stimulation. An immunoreactive CgNOS signal was observed in both the cell membrane and cytoplasm at 12 h, whereas it was mainly localized to the cytoplasm at 24 h post-LPS and -TNF-α stimulation. These findings revealed that CgNOS could be transcriptionally activated by CgNF-κB1 and CgSTAT via the PI3K-Akt pathway, similar to what occurs for iNOS, but CgNOS translocated to the cytoplasm, similar to neuronal NOS, to modulate downstream signals during an immune defense. These results collectively provide crucial knowledge about the evolution of NOS structure and function.-Jiang, Q., Liu, Z., Zhou, Z., Wang, L., Wang, L., Yue, F., Wang, J., Wang, H., Song, L. Transcriptional activation and translocation of ancient NOS during immune response.


Assuntos
Óxido Nítrico Sintase/imunologia , Ativação Transcricional , Animais , Núcleo Celular/metabolismo , Crassostrea/genética , Citoplasma/efeitos dos fármacos , Citoplasma/metabolismo , Lipopolissacarídeos/farmacologia , NF-kappa B/imunologia , Óxido Nítrico/imunologia , Ostreidae , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia , Ativação Transcricional/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo
18.
Fish Shellfish Immunol ; 66: 140-147, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28476673

RESUMO

Ocean acidification (OA) has deleterious impacts on immune response and energy homeostasis status of Mollusca. In the present study, the apoptosis ratio of hemocytes and the adenosine triphosphate (ATP) allocation in gill tissues were determined after Pacific oysters Crassostrea gigas were exposed to elevated CO2 environment (pH = 7.50) for 16 days.The apoptosis ratio in CO2 exposure group (35.2%) was significantly higher (p < 0.05) than that in the control group, and the increased apoptosis ratio induced by elevated CO2 could be significantly inhibited (p < 0.05) by KH7, a specific inhibitor of a bicarbonate sensor soluble adenylyl cyclase (sAC). After CO2 exposure, sAC in oyster (CgsAC) was found to be clustered with mitochondria in the cytoplasm, and the pro-caspase-3 was cleaved into two small fragments. Moreover, the activities of caspase-3 and caspase-9 also increased post CO2 exposure and these increases could be inhibited by KH7. However, the activities of caspase-8 did not change significantly compared with that in the control group. After CO2 exposure, the ATP content in the gill increased significantly (p < 0.05) and such increase could also be inhibited by KH7. The ATP content in purified gill mitochondria decreased significantly (p < 0.05) after CO2 exposure, which was also inhibited by KH7. These results implied that the elevated CO2 could activate the mitochondria-CgsAC pathway of apoptosis and ATP metabolism in oyster, and this pathway played essential roles in maintaining the homeostasis and the balance of energy metabolism in response to OA.


Assuntos
Trifosfato de Adenosina/metabolismo , Adenilil Ciclases/metabolismo , Apoptose , Dióxido de Carbono/farmacologia , Crassostrea/fisiologia , Animais , Crassostrea/efeitos dos fármacos , Crassostrea/enzimologia , Mitocôndrias/metabolismo
19.
Fish Shellfish Immunol ; 62: 341-348, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28159695

RESUMO

Serotonin, also known as 5-hydroxytryptamine (5-HT), is a critical neurotransmitter in the neuroendocrine-immune regulatory network and involved in regulation of the stress response in vertebrates and invertebrates. In the present study, serotonin was found to be widely distributed in the tissues of Pacific oyster Crassostrea gigas, including haemolymph, gonad, visceral ganglion, mantle, gill, labial palps and hepatopancreas, and its concentration increased significantly in haemolymph and mantle after the oysters were exposed to air for 1 d. The apoptosis rate of haemocytes was significantly declined after the oysters received an injection of extra serotonin, while the activity of superoxide dismutase (SOD) in haemolymph increased significantly. After the stimulation of serotonin during air exposure, the apoptosis rate of oyster haemocytes and the concentration of H2O2 in haemolymph were significantly decreased, while the SOD activity was significantly elevated. Furthermore, the survival rate of oysters from 4th to 6th d after injection of serotonin was higher than that of FSSW group and air exposure group. The results clearly indicated that serotonin could modulate apoptotic effect and redox during air exposure to protect oysters from stress.


Assuntos
Ar , Crassostrea/fisiologia , Agonistas do Receptor de Serotonina/metabolismo , Serotonina/metabolismo , Animais , Apoptose , Crassostrea/enzimologia , Hemócitos/enzimologia , Hemócitos/imunologia , Hemócitos/fisiologia , Peróxido de Hidrogênio/metabolismo , Estresse Fisiológico , Superóxido Dismutase/metabolismo
20.
Fish Shellfish Immunol ; 64: 297-307, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28286314

RESUMO

Oyster Crassostrea gigas is one model mollusc inhabiting in the intertidal zone and is frequently stressed by desiccation. The adaptation mechanism of oyster to environmental stress involves multiple levels, and miRNA is one of the most important regulators in post-transcriptional level. In the present study, an oyster norepinephrine-responsive miRNA cgi-miR-365 was proved to contribute to the host adaptation against desiccation by directly promoting the expression of CgHSP90AA1. Briefly, a significant increase of cgi-miR-365 was observed from the first day after aerial exposure and the up-regulation was vigorously repressed when oysters were injected with adrenoceptors antagonists. A total of 15 genes involved in biological regulation, metabolic process and response to stimulus were predicted to be modulated by cgi-miR-365. Among these genes, CgHSP90AA1 was up-regulated significantly during desiccation and could be down-regulated after simultaneous injection of adrenoceptors antagonists. The interaction between cgi-miR-365 and CgHSP90AA1 was subsequently verified in vitro, and a significant promotion of CgHSP90AA1 transcripts was observed after overexpressing cgi-miR-365 in either in vitro luciferase reporter assay or primarily cultured haemocytes. Meanwhile, CgHSP90AA1 transcripts decreased in vivo when cgi-miR-365 was repressed by its inhibitor during desiccation. Collectively, it was suggested that cgi-miR-365 could be induced by norepinephrine during desiccation and promote CgHSP90AA1 expression directly after binding to its 3'-UTR, which would provide new evidence in miRNA-mediated adaptation mechanism in oysters against intertidal stress.


Assuntos
Crassostrea/fisiologia , Dessecação , Proteínas de Choque Térmico HSP90/genética , MicroRNAs/genética , Água do Mar , Animais , Crassostrea/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas de Choque Térmico HSP90/metabolismo , Hemócitos/efeitos dos fármacos , MicroRNAs/metabolismo , Norepinefrina/farmacologia , Distribuição Aleatória , Ondas de Maré , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA