Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chem Sci ; 15(22): 8478-8487, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38846387

RESUMO

Hard carbon (HC) is one of the most promising anode materials for sodium-ion batteries (SIBs) due to its cost-effectiveness and low-voltage plateau capacity. Heteroatom doping is considered as an effective strategy to improve the sodium storage capacity of HC. However, most of the previous heteroatom doping strategies are performed at a relatively low temperature, which could not be utilized to raise the low-voltage plateau capacity. Moreover, extra doping of heteroatoms could create new defects, leading to a low initial coulombic efficiency (ICE). Herein, we propose a repair strategy based on doping a trace amount of P to achieve a high capacity along with a high ICE. By employing the cross-linked interaction between glucose and phytic acid to achieve the in situ P doped spherical hard carbon, the obtained PHC-0.2 possesses a large interlayer space that facilitates Na+ storage and transportation. In addition, doping a suitable amount of P could repair some defects in carbon layers. When used as an anode material for SIBs, the PHC-0.2 exhibits an enhanced reversible capacity of 343 mA h g-1 at 20 mA g-1 with a high ICE of 92%. Full cells consisting of a PHC-0.2 anode and a Na2Fe0.5Mn0.5[Fe(CN)6] cathode exhibited an average potential of 3.1 V with an initial discharge capacity of 255 mA h g-1 and an ICE of 85%. The full cell displays excellent cycling stability with a capacity retention of 80.3% after 170 cycles. This method is simple and low-cost, which can be extended to other energy storage materials.

2.
Chem Commun (Camb) ; 59(29): 4257-4273, 2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-36940099

RESUMO

Carbon nanospheres (CNSs) have attracted great interest in energy conversion and storage technologies due to their excellent chemical and thermal stability, high electrical conductivity and controllable size structure characteristics. In order to further improve the energy storage properties, many efforts have been made to design suitable nanocarbon spherical materials to improve electrochemical performance. In this overview, we summarize the recent research progress on CNSs, mainly focusing on the synthesis methods and their application as high-performance electrode materials in rechargeable batteries. As for the synthesis methods, hard template methods, soft template methods, the extension of the Stöber method, hydrothermal carbonization, aerosol-assisted synthesis are described in detail. In addition, the use of CNSs as electrodes in energy storage devices (mainly concentrated on lithium-ion batteries (LIBs)), sodium-ion batteries (SIBs) and potassium-ion batteries (PIBs) are also discussed in detail in this article. Finally, some perspectives on the future research and development of CNSs are provided.

3.
ChemSusChem ; 14(18): 3724-3743, 2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34245489

RESUMO

Intercalation-based anode materials can be considered as the most promising anode candidates for large-scale sodium-ion batteries (SIBs), owing to their long-term cycling stability and environmental friendliness, as well as their natural abundance. Nevertheless, their low energy density, low initial coulombic efficiency, and poor cycling lifespan, as well as sluggish sodium diffusion dynamics are still the main issues for the application of intercalation-based anode materials in SIBs in terms of meeting the benchmark requirements for commercialization. Over the past few years, tremendous efforts have been devoted to improving the performance of SIBs. In this Review, recent progress in the development of intercalation-based anode materials, including TiO2 , Li4 Ti5 O12 , Na2 Ti3 O7 , and NaTi2 (PO4 )3 , is summarized in terms of their sodium storage performance, critical issues, sodiation/desodiation behavior, and effective strategies to enhance their electrochemical performance. Additionally, challenges and perspectives are provided to further understand these intercalation-based anode materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA