Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
MedComm (2020) ; 5(4): e516, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38617433

RESUMO

At present, diabetes mellitus (DM) has been one of the most endangering healthy diseases. Current therapies contain controlling high blood sugar, reducing risk factors like obesity, hypertension, and so on; however, DM patients inevitably and eventually progress into different types of diabetes complications, resulting in poor quality of life. Unfortunately, the clear etiology and pathogenesis of diabetes complications have not been elucidated owing to intricate whole-body systems. The immune system was responsible to regulate homeostasis by triggering or resolving inflammatory response, indicating it may be necessary to diabetes complications. In fact, previous studies have been shown inflammation plays multifunctional roles in the pathogenesis of diabetes complications and is attracting attention to be the meaningful therapeutic strategy. To this end, this review systematically concluded the current studies over the relationships of susceptible diabetes complications (e.g., diabetic cardiomyopathy, diabetic retinopathy, diabetic peripheral neuropathy, and diabetic nephropathy) and inflammation, ranging from immune cell response, cytokines interaction to pathomechanism of organ injury. Besides, we also summarized various therapeutic strategies to improve diabetes complications by target inflammation from special remedies to conventional lifestyle changes. This review will offer a panoramic insight into the mechanisms of diabetes complications from an inflammatory perspective and also discuss contemporary clinical interventions.

2.
Front Pharmacol ; 13: 1010533, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36249799

RESUMO

Background: Acute ischemic stroke (AIS) is associated with high morbidity, mortality, and disability. Clinical trials have shown that Honghua class injections (HCIs) combined with WM achieve better clinical efficacy than WM alone. In this study, we performed a Bayesian network meta-analysis (NMA) of randomized controlled trials (RCTs) to evaluate the efficacy of different HCIs combined with WM in treating AIS. Methods: First, the inclusion and exclusion criteria were established. From inception to 1 June 2022, a systematic literature search was conducted in multiple databases for the treatment of AIS with HCIs, including Honghua injection (HI), Safflower Yellow injection (SYI), Guhong injection (GHI), and Danhong injection (DHI). Subsequently, OpenBUGS 3.2.3 was applied to conduct a Bayesian algorithm, and Stata 16.0 was used to prepare the graphs. Multidimensional cluster analysis was performed using the "scatterplot3d" package in R 3.6.1 software. Results: In this NMA, a total of 120 eligible RCTs were included, involving 12,658 patients, and evaluating the clinical effectiveness rates, activities of daily living (ADL), hemorheological indexes, and adverse reactions (ADRs). DHI + WM was the best intervention for improving the clinical effectiveness rate. Moreover, cluster analysis demonstrated that DHI + WM and SYI + WM had better comprehensive therapeutic effects. As most of the included RCTs did not monitor ADRs, the safety of the HCIs remains to be further explored. Conclusion: DHI + WM and SYI + WM probably have a better clinical efficacy on AIS patients. Nevertheless, due to the limitation of this NMA, this conclusion may be biased. High-quality RCTs should be performed to validate our findings. Systematic Review Registration: https://www.crd.york.ac.uk/PROSPERO/, identifier CRD42021229599.

3.
Ultrason Sonochem ; 42: 659-664, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29429714

RESUMO

Nitrogen-doped graphene nanosheet (N-SEGN) with pyrrolic nitrogen and 5-9 vacancy defects has been successfully prepared from a hydrothermal reaction of tetra-2-pyridinylpyrazine and sonoelectrochemistry-exfoliated graphene nanosheet, with point defects. Additionally, based on the same reaction using chemically reduced graphene oxide, nitrogen-doped chemically reduced graphene oxide (N-rGO) with graphitic nitrogen was prepared. The N-SEGN and N-rGO were used as a non-enzymatic H2O2 sensors. The sensitivity of the N-SEGN was 231.3 µA·mM-1·cm-2, much greater than 57.3 µA·mM-1·cm-2 of N-rGO. The N-SEGN showed their potential for being a H2O2 sensor.

4.
Nanoscale ; 10(9): 4194-4201, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29446418

RESUMO

The carbon nanotube aerogel (CNA) with an ultra-low density, three-dimensional network nanostructure, superior electronic conductivity and large surface area is being widely employed as a catalytic electrode and catalytic support. Impressively, dye-sensitized solar cells (DSSCs) assembled with a CNA counter electrode (CE) achieved a maximum power conversion efficiency (PCE) of 8.28%, which exceeded that of the conventional platinum (Pt)-based DSSC (7.20%) under the same conditions. Furthermore, highly dispersed CoS2 nanoparticles endowed with excellent intrinsic catalytic activity were hydrothermally incorporated to form a CNA-supported CoS2 (CNA-CoS2) CE, which was due to the large number of catalytically active sites and sufficient connections between CoS2 and the CNA. The electrocatalytic ability and stability were systematically evaluated by cyclic voltammetry (CV), electrochemical impedance spectra (EIS) and Tafel polarization, which confirmed that the resultant CNA-CoS2 hybrid CE exhibited a remarkably higher electrocatalytic activity toward I3- reduction, and faster ion diffusion and electron transfer than the pure CNA CE. Such cost-effective DSSCs assembled with an optimized CNA-CoS2 CE yielded an enhanced PCE of 8.92%, comparable to that of the cell fabricated with the CNA-Pt hybrid CE reported in our published literature (9.04%). These results indicate that the CNA-CoS2 CE can be considered as a promising candidate for Pt-free CEs used in low-cost and high-performance DSSCs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA