Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 126
Filtrar
1.
BMC Biol ; 22(1): 29, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38317233

RESUMO

BACKGROUND: Cyclic Nucleotide-Binding Domain (CNBD)-family channels display distinct voltage-sensing properties despite sharing sequence and structural similarity. For example, the human Ether-a-go-go Related Gene (hERG) channel and the Hyperpolarization-activated Cyclic Nucleotide-gated (HCN) channel share high amino acid sequence similarity and identical domain structures. hERG conducts outward current and is activated by positive membrane potentials (depolarization), whereas HCN conducts inward current and is activated by negative membrane potentials (hyperpolarization). The structural basis for the "opposite" voltage-sensing properties of hERG and HCN remains unknown. RESULTS: We found the voltage-sensing domain (VSD) involves in modulating the gating polarity of hERG. We identified that a long-QT syndrome type 2-related mutation within the VSD, K525N, mediated an inwardly rectifying non-deactivating current, perturbing the channel closure, but sparing the open state and inactivated state. K525N rescued the current of a non-functional mutation in the pore helix region (F627Y) of hERG. K525N&F627Y switched hERG into a hyperpolarization-activated channel. The reactivated inward current induced by hyperpolarization mediated by K525N&F627Y can be inhibited by E-4031 and dofetilide quite well. Moreover, we report an extracellular interaction between the S1 helix and the S5-P region is crucial for modulating the gating polarity. The alanine substitution of several residues in this region (F431A, C566A, I607A, and Y611A) impaired the inward current of K525N&F627Y. CONCLUSIONS: Our data provide evidence that a potential cooperation mechanism in the extracellular vestibule of the VSD and the PD would determine the gating polarity in hERG.


Assuntos
Canal de Potássio ERG1 , Ativação do Canal Iônico , Humanos , Sequência de Aminoácidos , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/genética , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Ativação do Canal Iônico/genética , Mutação , Nucleotídeos Cíclicos , Canal de Potássio ERG1/genética
2.
J Biol Chem ; 298(9): 102372, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35970391

RESUMO

Nitrogen (N2) gas in the atmosphere is partially replenished by microbial denitrification of ammonia. Recent study has shown that Alcaligenes ammonioxydans oxidizes ammonia to dinitrogen via a process featuring the intermediate hydroxylamine, termed "Dirammox" (direct ammonia oxidation). However, the unique biochemistry of this process remains unknown. Here, we report an enzyme involved in Dirammox that catalyzes the conversion of hydroxylamine to N2. We tested previously annotated proteins involved in redox reactions, DnfA, DnfB, and DnfC, to determine their ability to catalyze the oxidation of ammonia or hydroxylamine. Our results showed that none of these proteins bound to ammonia or catalyzed its oxidation; however, we did find DnfA bound to hydroxylamine. Further experiments demonstrated that, in the presence of NADH and FAD, DnfA catalyzed the conversion of 15N-labeled hydroxylamine to 15N2. This conversion did not happen under oxygen (O2)-free conditions. Thus, we concluded that DnfA encodes a hydroxylamine oxidase. We demonstrate that DnfA is not homologous to any known hydroxylamine oxidoreductases and contains a diiron center, which was shown to be involved in catalysis via electron paramagnetic resonance experiments. Furthermore, enzyme kinetics of DnfA were assayed, revealing a Km of 92.9 ± 3.0 µM for hydroxylamine and a kcat of 0.028 ± 0.001 s-1. Finally, we show that DnfA was localized in the cytoplasm and periplasm as well as in tubular membrane invaginations in HO-1 cells. To the best of our knowledge, we conclude that DnfA is the first enzyme discovered that catalyzes oxidation of hydroxylamine to N2.


Assuntos
Alcaligenes , Amônia , Hidroxilaminas , Oxirredutases , Alcaligenes/enzimologia , Amônia/metabolismo , Proteínas de Bactérias/metabolismo , Flavina-Adenina Dinucleotídeo/metabolismo , Hidroxilaminas/metabolismo , NAD/metabolismo , Nitrogênio/metabolismo , Oxirredução , Oxirredutases/metabolismo , Oxigênio
3.
Appl Microbiol Biotechnol ; 107(18): 5813-5827, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37439835

RESUMO

Sulfonamide antibiotics (SAs) are serious pollutants to ecosystems and environments. Previous studies showed that microbial degradation of SAs such as sulfamethoxazole (SMX) proceeds via a sad-encoded oxidative pathway, while the sulfonamide-resistant dihydropteroate synthase gene, sul, is responsible for SA resistance. However, the co-occurrence of sad and sul genes, as well as how the sul gene affects SMX degradation, was not explored. In this study, two SMX-degrading bacterial strains, SD-1 and SD-2, were cultivated from an SMX-degrading enrichment. Both strains were Paenarthrobacter species and were phylogenetically identical; however, they showed different SMX degradation activities. Specifically, strain SD-1 utilized SMX as the sole carbon and energy source for growth and was a highly efficient SMX degrader, while SD-2 did could not use SMX as a sole carbon or energy source and showed limited SMX degradation when an additional carbon source was supplied. Genome annotation, growth, enzymatic activity tests, and metabolite detection revealed that strains SD-1 and SD-2 shared a sad-encoded oxidative pathway for SMX degradation and a pathway of protocatechuate degradation. A new sulfonamide-resistant dihydropteroate synthase gene, sul918, was identified in strain SD-1, but not in SD-2. Moreover, the lack of sul918 resulted in low SMX degradation activity in strain SD-2. Genome data mining revealed the co-occurrence of sad and sul genes in efficient SMX-degrading Paenarthrobacter strains. We propose that the co-occurrence of sulfonamide-resistant dihydropteroate synthase and sad genes is crucial for efficient SMX biodegradation. KEY POINTS: • Two sulfamethoxazole-degrading strains with distinct degrading activity, Paenarthrobacter sp. SD-1 and Paenarthrobacter sp. SD-2, were isolated and identified. • Strains SD-1 and SD-2 shared a sad-encoded oxidative pathway for SMX degradation. • A new plasmid-borne SMX resistance gene (sul918) of strain SD-1 plays a crucial role in SMX degradation efficiency.


Assuntos
Di-Hidropteroato Sintase , Sulfametoxazol , Sulfametoxazol/metabolismo , Di-Hidropteroato Sintase/genética , Ecossistema , Antibacterianos/metabolismo , Sulfonamidas/metabolismo , Sulfanilamida , Biodegradação Ambiental , Carbono
4.
Pestic Biochem Physiol ; 196: 105583, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37945269

RESUMO

The serine/threonine kinase Akt is an important component of the insulin signalling pathway (ISP) in regulating insect metabolism, growth, and reproduction. The psocid Liposcelis entomophila (Enderlein) is a distasteful stored products pest for its fecundity. However, the molecular mechanism of Akt that controls vitellogenesis and oviposition in L. entomophila remains obscure. In this study, the function of the Akt gene in the female reproduction of L. entomophila (designated as LeAkt) was characterized and investigated. LeAkt contains a 1587 bp open reading frame encoding a 529 amino acid protein that possesses a conserved Pleckstrin Homology domain (PH) and a Ser/Thr-type protein kinase (S_TKc) domain. The mRNA expression of LeAkt was the highest in female adult stages and peaked for 7-day female adults. In female adult tissues, LeAkt was highly expressed in the head and the ovary, indicating that LeAkt was closely correlated with female ovarian development. LeAkt transcription level was significantly suppressed by oral feeding on artificial diets mixed with dsRNA-LeAkt. RNAi-mediated silencing of LeAkt led to a severe inhibition of vitellogenein (Vg) expression and ovarian development, together with lower fecundity and hatchability compared to that of the normal feeding group, suggesting a critical role for LeAkt in L. entomophila reproduction. Further studies revealed that LeAkt silencing significantly decreased the mRNA levels of several signalling and biosynthetic genes in the juvenile hormone (JH) signalling pathway, such as methoprene-tolerant (LeMet), krüppel homolog 1 (LeKr-h1) and JH methyltransferase (LeJHAMT), leading to a severe inhibition of JH biosynthesis in L. entomophila female adults. These results suggested that LeAkt was affecting JH synthesis, thereby influencing Vg synthesis and ultimately L. entomophila reproduction.


Assuntos
Hormônios Juvenis , Proteínas Proto-Oncogênicas c-akt , Animais , Proteínas Proto-Oncogênicas c-akt/genética , Hormônios Juvenis/metabolismo , Fertilidade , RNA Mensageiro , Serina , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo
5.
Appl Environ Microbiol ; 88(6): e0226121, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35108103

RESUMO

Ammonia oxidation is an important process in both the natural nitrogen cycle and nitrogen removal from engineered ecosystems. Recently, a new ammonia oxidation pathway termed Dirammox (direct ammonia oxidation, NH3→NH2OH→N2) has been identified in Alcaligenes ammonioxydans. However, whether Dirammox is present in other microbes, as well as its genetic regulation, remains unknown. In this study, it was found that the metabolically versatile bacterium Alcaligenes faecalis strain JQ135 could efficiently convert ammonia into N2 via NH2OH under aerobic conditions. Genetic deletion and complementation results suggest that dnfABC is responsible for the ammonia oxidation to N2 in this strain. Strain JQ135 also employs aerobic denitrification, mainly producing N2O and trace amounts of N2, with nitrite as the sole nitrogen source. Deletion of the nirK and nosZ genes, which are essential for denitrification, did not impair the capability of JQ135 to oxidize ammonia to N2 (i.e., Dirammox is independent of denitrification). Furthermore, it was also demonstrated that pod (which encodes pyruvic oxime dioxygenase) was not involved in Dirammox and that AFA_16745 (which was previously annotated as ammonia monooxygenase and is widespread in heterotrophic bacteria) was not an ammonia monooxygenase. The MocR-family transcriptional regulator DnfR was characterized as an activator of the dnfABC operon with the binding motif 5'-TGGTCTGT-3' in the promoter region. A bioinformatic survey showed that homologs of dnf genes are widely distributed in heterotrophic bacteria. In conclusion, this work demonstrates that, besides A. ammonioxydans, Dirammox occurs in other bacteria and is regulated by the MocR-family transcriptional regulator DnfR. IMPORTANCE Microbial ammonia oxidation is a key and rate-limiting step of the nitrogen cycle. Three previously known ammonia oxidation pathways (i.e., nitrification, anaerobic ammonia oxidation [Anammox], and complete ammonia oxidation [Comammox]) are mediated by autotrophic microbes. However, the genetic foundations of ammonia oxidation by heterotrophic microorganisms have not been investigated in depth. Recently, a previously unknown pathway, termed direct ammonia oxidation to N2 (Dirammox), has been identified in the heterotrophic bacterium Alcaligenes ammonioxydans HO-1. This paper shows that, in the metabolically versatile bacterium Alcaligenes faecalis JQ135, the Dirammox pathway is mediated by dnf genes, which are independent of the denitrification pathway. A bioinformatic survey suggests that homologs of dnf genes are widely distributed in bacteria. These findings enhance the understanding of the molecular mechanisms of heterotrophic ammonia oxidation to N2.


Assuntos
Alcaligenes faecalis , Aerobiose , Alcaligenes faecalis/genética , Alcaligenes faecalis/metabolismo , Amônia/metabolismo , Desnitrificação , Ecossistema , Nitrificação , Nitritos/metabolismo , Nitrogênio/metabolismo
6.
Environ Microbiol ; 23(11): 6965-6980, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34581470

RESUMO

Heterotrophic nitrifiers are able to oxidize and remove ammonia from nitrogen-rich wastewaters but the genetic elements of heterotrophic ammonia oxidation are poorly understood. Here, we isolated and identified a novel heterotrophic nitrifier, Alcaligenes ammonioxydans sp. nov. strain HO-1, oxidizing ammonia to hydroxylamine and ending in the production of N2 gas. Genome analysis revealed that strain HO-1 encoded a complete denitrification pathway but lacks any genes coding for homologous to known ammonia monooxygenases or hydroxylamine oxidoreductases. Our results demonstrated strain HO-1 denitrified nitrite (not nitrate) to N2 and N2 O at anaerobic and aerobic conditions respectively. Further experiments demonstrated that inhibition of aerobic denitrification did not stop ammonia oxidation and N2 production. A gene cluster (dnfT1RT2ABCD) was cloned from strain HO-1 and enabled E. coli accumulated hydroxylamine. Sub-cloning showed that genetic cluster dnfAB or dnfABC already enabled E. coli cells to produce hydroxylamine and further to 15 N2 from (15 NH4 )2 SO4 . Transcriptome analysis revealed these three genes dnfA, dnfB and dnfC were significantly upregulated in response to ammonia stimulation. Taken together, we concluded that strain HO-1 has a novel dnf genetic cluster for ammonia oxidation and this dnf genetic cluster encoded a previously unknown pathway of direct ammonia oxidation (Dirammox) to N2 .


Assuntos
Amônia , Purificação da Água , Aerobiose , Alcaligenes/genética , Alcaligenes/metabolismo , Amônia/metabolismo , Desnitrificação , Escherichia coli/metabolismo , Nitrificação , Nitritos/metabolismo , Nitrogênio/metabolismo , Oxirredução , Esgotos , Purificação da Água/métodos
7.
Appl Environ Microbiol ; 87(24): e0153421, 2021 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-34586909

RESUMO

Biological foaming (or biofoaming) is a frequently occurring problem in wastewater treatment plants (WWTPs) and is attributed to the overwhelming growth of filamentous bulking and foaming bacteria (BFB). Biological foaming has been intensively investigated, with BFB like Microthrix and Skermania having been identified from WWTPs and implicated in foaming. Nevertheless, studies are still needed to improve our understanding of the microbial diversity of WWTP biofoams and how microbial activities contribute to foaming. In this study, sludge foaming at the Qinghe WWTP of China was monitored, and sludge foams were investigated using culture-dependent and culture-independent microbiological methods. The foam microbiomes exhibited high abundances of Skermania, Mycobacterium, Flavobacteriales, and Kaistella. A previously unknown bacterium, Candidatus Kaistella beijingensis, was cultivated from foams, its genome was sequenced, and it was phenotypically characterized. Ca. K. beijingensis exhibits hydrophobic cell surfaces, produces extracellular polymeric substances (EPS), and metabolizes lipids. Ca. K. beijingensis abundances were proportional to EPS levels in foams. Several proteins encoded by the Ca. K. beijingensis genome were identified from EPS that was extracted from sludge foams. Ca. K. beijingensis populations accounted for 4 to 6% of the total bacterial populations in sludge foam samples within the Qinghe WWTP, although their abundances were higher in spring than in other seasons. Cooccurrence analysis indicated that Ca. K. beijingensis was not a core node among the WWTP community network, but its abundances were negatively correlated with those of the well-studied BFB Skermania piniformis among cross-season Qinghe WWTP communities. IMPORTANCE Biological foaming, also known as scumming, is a sludge separation problem that has become the subject of major concern for long-term stable activated sludge operation in decades. Biological foaming was considered induced by foaming bacteria. However, the occurrence and deterioration of foaming in many WWTPs are still not completely understood. Cultivation and characterization of the enriched bacteria in foaming are critical to understand their genetic, physiological, phylogenetic, and ecological traits, as well as to improve the understanding of their relationships with foaming and performance of WWTPs.


Assuntos
Flavobacteriaceae , Esgotos , Purificação da Água , China , Flavobacteriaceae/classificação , Flavobacteriaceae/isolamento & purificação , Filogenia , Esgotos/microbiologia
8.
Microb Cell Fact ; 20(1): 5, 2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-33413415

RESUMO

BACKGROUND: Phaffia rhodozyma has many desirable properties for astaxanthin production, including rapid heterotrophic metabolism and high cell densities in fermenter culture. The low optimal temperature range (17-21 °C) for cell growth and astaxanthin synthesis in this species presents an obstacle to efficient industrial-scale astaxanthin production. The inhibition mechanism of cell growth at > 21 °C in P. rhodozyma have not been investigated. RESULTS: MK19, a mutant P. rhodozyma strain grows well at moderate temperatures, its cell growth was also inhibited at 28 °C, but such inhibition was mitigated, and low biomass 6 g/L was obtained after 100 h culture. Transcriptome analysis indicated that low biomass at 28 °C resulted from strong suppression of DNA and RNA synthesis in MK19. Growth inhibition at 28 °C was due to cell membrane damage with a characteristic of low mRNA content of fatty acid (f.a.) pathway transcripts (acc, fas1, fas2), and consequent low f.a. CONTENT: Thinning of cell wall and low mannose content (leading to loss of cell wall integrity) also contributed to reduced cell growth at 28 °C in MK19. Levels of astaxanthin and ergosterol, two end-products of isoprenoid biosynthesis (a shunt pathway of f.a. biosynthesis), reached 2000 µg/g and 7500 µg/g respectively; ~2-fold higher than levels at 21 or 25 °C. Abundance of ergosterol, an important cell membrane component, compensated for lack of f.a., making possible the biomass production of 6 g/L for MK19 at 28 °C. CONCLUSIONS: Inhibition of growth of P. rhodozyma at 28 °C results from blocking of DNA, RNA, f.a., and cell wall biosynthesis. In MK19, abundant ergosterol made possible biomass production 6 g/L at 28 °C. Significant accumulation of astaxanthin and ergosterol indicated an active MVA pathway in MK19 at 28 °C. Strengthening of the MVA pathway can be a feasible metabolic engineering approach for enhancement of astaxanthin synthesis in P. rhodozyma. The present findings provide useful mechanistic insights regarding adaptation of P. rhodozyma to 28 °C, and improved understanding of feasible metabolic engineering techniques for industrial scale astaxanthin production by this economically important yeast species.


Assuntos
Adaptação Fisiológica , Basidiomycota/metabolismo , Parede Celular/química , Ergosterol/metabolismo , Temperatura , Basidiomycota/genética , Basidiomycota/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Engenharia Metabólica , Xantofilas/metabolismo
9.
Acta Pharmacol Sin ; 42(2): 209-217, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32612277

RESUMO

Eleutheroside B (EB) is the main active constituent derived from the Chinese herb Acanthopanax senticosus (AS) that has been reported to possess cardioprotective effects. In this study we investigated the effects of EB on cardiac electrophysiology and its suppression on atrial fibrillation (AF). Whole-cell recording was conducted in isolated rabbit atrial myocytes. The intracellular calcium ([Ca2+]i) concentration was measured using calcium indicator Fura-2/AM fluorescence. Monophasic action potential (MAP) and electrocardiogram (ECG) synchronous recordings were conducted in Langendorff-perfused rabbit hearts using ECG signal sampling and analysis system. We showed that EB dose-dependently inhibited late sodium current (INaL), transient sodium current (INaT), and sea anemone toxin II (ATX II)-increased INaL with IC50 values of 167, 1582, and 181 µM, respectively. On the other hand, EB (800 µM) did not affect L-type calcium current (ICaL), inward rectifier potassium channel current (IK), and action potential duration (APD). Furthermore, EB (300 µM) markedly decreased ATX II-prolonged the APD at 90% repolarization (APD90) and eliminated ATX II-induced early afterdepolarizations (EADs), delayed afterdepolarizations (DADs), and triggered activities (TAs). Moreover, EB (200 µM) significantly suppressed ATX II-induced Na+-dependent [Ca2+]i overload in atrial myocytes. In the Langendorff-perfused rabbit hearts, application of EB (200 µM) or TTX (2 µM) substantially decreased ATX II-induced incidences of atrial fibrillation (AF), ventricular fibrillation (VF), and heart death. These results suggest that augmented INaL alone is sufficient to induce AF, and EB exerts anti-AF actions mainly via blocking INaL, which put forward the basis of pharmacology for new clinical application of EB.


Assuntos
Fibrilação Atrial/prevenção & controle , Cardiotônicos/farmacologia , Glucosídeos/farmacologia , Miócitos Cardíacos/efeitos dos fármacos , Fenilpropionatos/farmacologia , Potenciais de Ação/efeitos dos fármacos , Animais , Cálcio/metabolismo , Cardiotônicos/administração & dosagem , Venenos de Cnidários/toxicidade , Relação Dose-Resposta a Droga , Eletrocardiografia , Glucosídeos/administração & dosagem , Miócitos Cardíacos/metabolismo , Técnicas de Patch-Clamp , Fenilpropionatos/administração & dosagem , Coelhos , Bloqueadores dos Canais de Sódio/administração & dosagem , Bloqueadores dos Canais de Sódio/farmacologia
10.
Appl Environ Microbiol ; 86(4)2020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-31811031

RESUMO

Microorganisms in wastewater treatment plants (WWTPs) play a key role in the removal of pollutants from municipal and industrial wastewaters. A recent study estimated that activated sludge from global municipal WWTPs harbors 1 × 109 to 2 × 109 microbial species, the majority of which have not yet been cultivated, and 28 core taxa were identified as "most-wanted" ones (L. Wu, D. Ning, B. Zhang, Y. Li, et al., Nat Microbiol 4:1183-1195, 2019, https://doi.org/10.1038/s41564-019-0426-5). Cultivation and characterization of the "most-wanted" core bacteria are critical to understand their genetic, physiological, phylogenetic, and ecological traits, as well as to improve the performance of WWTPs. In this study, we isolated a bacterial strain, designated SJ-1, that represents a novel cluster within Betaproteobacteria and corresponds to OTU_16 within the 28 core taxa in the "most-wanted" list. Strain SJ-1 was identified and nominated as Casimicrobium huifangae gen. nov., sp. nov., of a novel family, Casimicrobiaceae. C. huifangae is ubiquitously distributed and is metabolically versatile. In addition to mineralizing various carbon sources (including carbohydrates, aromatic compounds, and short-chain fatty acids), C. huifangae is capable of nitrate reduction and phosphorus accumulation. The population of C. huifangae accounted for more than 1% of the bacterial population of the activated sludge microbiome from the Qinghe WWTP, which showed seasonal dynamic changes. Cooccurrence analysis suggested that C. huifangae was an important module hub in the bacterial network of Qinghe WWTP.IMPORTANCE The activated sludge process is the most widely applied biotechnology and is one of the best ecosystems to address microbial ecological principles. Yet, the cultivation of core bacteria and the exploration of their physiology and ecology are limited. In this study, the core and novel bacterial taxon C. huifangae was cultivated and characterized. This study revealed that C. huifangae functioned as an important module hub in the activated sludge microbiome, and it potentially plays an important role in municipal wastewater treatment plants.


Assuntos
Betaproteobacteria/classificação , Betaproteobacteria/fisiologia , Esgotos/microbiologia , Betaproteobacteria/genética , Microbiota , Filogenia , RNA Bacteriano/análise , RNA Ribossômico 16S/análise
11.
J Cardiovasc Pharmacol ; 76(4): 437-444, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32675747

RESUMO

Increased late sodium current (INa) induces long QT syndrome 3 with increased risk of atrial fibrillation (AF). The role of atrial late INa in the induction of AF and in the treatment of AF was determined in this study. AF parameters were measured in isolated rabbit hearts exposed to late INa enhancer and inhibitors. Late INa from isolated atrial and ventricular myocytes were measured using whole-cell patch-clamp techniques. We found that induced-AF by programmed S1S2 stimulation and spontaneous episodes of AF were recorded in hearts exposed to either low (0.1-3 nM) or high (3-10 nM) concentrations of ATX-II (n = 10). Prolongations in atrial monophasic action potential duration at 90% completion of repolarization and effective refractory period by ATX-II (0.1-15 nM) were greater in hearts paced at slow than at fast rates (n = 5-10, P < 0.05). Both endogenous and ATX-II-enhanced late INa density were greater in atrial than that in ventricular myocytes (n = 9 and 8, P < 0.05). Eleclazine and ranolazine reduced AF window and AF burden in association with the inhibition of both endogenous and enhanced atrial late INa with half maximal inhibitory concentrations (IC50) of 1.14 and 9.78, and 0.94 and 8.31 µM, respectively. The IC50s for eleclazine and ranolazine to inhibit peak INa were 20.67 and 101.79 µM, respectively, in atrial myocytes. In conclusion, enhanced late INa in atrial myocytes increases the susceptibility for AF. Inhibition of either endogenous or enhanced late INa, with increased atrial potency of drugs is feasible for the treatment of AF.


Assuntos
Fibrilação Atrial/metabolismo , Função Atrial , Átrios do Coração/metabolismo , Frequência Cardíaca , Miócitos Cardíacos/metabolismo , Sódio/metabolismo , Potenciais de Ação , Animais , Antiarrítmicos/farmacologia , Fibrilação Atrial/induzido quimicamente , Fibrilação Atrial/fisiopatologia , Fibrilação Atrial/prevenção & controle , Função Atrial/efeitos dos fármacos , Estimulação Cardíaca Artificial , Venenos de Cnidários , Modelos Animais de Doenças , Feminino , Átrios do Coração/efeitos dos fármacos , Átrios do Coração/fisiopatologia , Frequência Cardíaca/efeitos dos fármacos , Preparação de Coração Isolado , Miócitos Cardíacos/efeitos dos fármacos , Coelhos , Período Refratário Eletrofisiológico , Bloqueadores dos Canais de Sódio/farmacologia , Fatores de Tempo
12.
Appl Microbiol Biotechnol ; 104(7): 3183-3192, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32055912

RESUMO

Nitrate accumulation causes long-time threat to aquatic animals in recirculating aquaculture system (RAS); thus, nitrate removal is also required in RASs. However, the lack of carbon sources makes denitrification difficult to function. Nitrate removal performance of an aerobic denitrifying and extracellular polyhydroxyalkanoate depolymerase-producing bacterium, Pseudomonas sp. AOB-7, using polyhydroxyalkanoate (PHA) granules as a solid sustained-release carbon source in RAS was evaluated. With the initial nitrate-N concentration of 140 mg/L, the high denitrification rates of 0.056 g NO3--N L-1 day-1 and 0.035 g NO3--N L-1 day-1 were achieved in denitrification medium containing poly-ß-hydroxybutyrate (PHB) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), respectively. Significant erosions and pits formed on the surface of the granules made them a good biofilm carrier for AOB-7, and 3-hydroxybutyrate (3-HB) monomer was the major product released to aquatic phase, which was benefit to animals. SEM photos showed that AOB-7 entered and attached on the inside of the PHA particle holes. A 4-week application trial was conducted to reveal the effects of PHB (AOB-7) denitrifying agent and 3-HB produced on growth of zebrafish (Brachydanio rerio) by adding 0.1% (w/v) PHB (AOB-7) denitrifying agent. Result indicated that PHB (AOB-7) denitrifying agent can significantly reduce nitrate-N content in RASs. Compared with the control group, feed coefficient ratio reduced by 18% and weight gain ratio increased by 29% in the PHB (AOB-7) denitrifying agent group. 3-HB monomer produced during the denitrification was speculated to function as a prebiotic and promote zebrafish growth. KEY POINTS: • AOB-7 showed a good aerobic denitrifying ability on PHA granules as sustained-release C source. • PHB (AOB-7) denitrifying agent can significantly reduce nitrate content in RAS. • R-3-HB monomer was the major product released to aquatic phase and function as a prebiotic.


Assuntos
Biofilmes/crescimento & desenvolvimento , Desnitrificação , Poli-Hidroxialcanoatos/metabolismo , Pseudomonas/metabolismo , Ácido 3-Hidroxibutírico/biossíntese , Aerobiose , Aquicultura , Biodegradação Ambiental , Carbono/metabolismo , Nitratos/isolamento & purificação , Pseudomonas/crescimento & desenvolvimento , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água
13.
BMC Microbiol ; 19(1): 133, 2019 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-31202260

RESUMO

BACKGROUND: A major obstacle to industrial-scale astaxanthin production by the yeast Phaffia rhodozyma is the strong inhibitory effect of high glucose concentration on astaxanthin synthesis. We investigated, for the first time, the mechanism of the regulatory effect of high glucose (> 100 g/L) at the metabolite and transcription levels. RESULTS: Total carotenoid, ß-carotene, and astaxanthin contents were greatly reduced in wild-type JCM9042 at high (110 g/L) glucose; in particular, ß-carotene content at 24-72 h was only 14-17% of that at low (40 g/L) glucose. The inhibitory effect of high glucose on astaxanthin synthesis appeared to be due mainly to repression of lycopene-to-ß-carotene and ß-carotene-to-astaxanthin steps in the pathway. Expression of carotenogenic genes crtE, pbs, and ast was also strongly inhibited by high glucose; such inhibition was mediated by creA, a global negative regulator of carotenogenic genes which is strongly induced by glucose. In contrast, astaxanthin-overproducing, glucose metabolic derepression mutant strain MK19 displayed de-inhibition of astaxanthin synthesis at 110 g/L glucose; this de-inhibition was due mainly to deregulation of pbs and ast expression, which in turn resulted from low creA expression. Failure of glucose to induce the genes reg1 and hxk2, which maintain CreA activity, also accounts for the fact that astaxanthin synthesis in MK19 was not repressed at high glucose. CONCLUSION: We conclude that astaxanthin synthesis in MK19 at high glucose is enhanced primarily through derepression of carotenogenic genes (particularly pbs), and that this process is mediated by CreA, Reg1, and Hxk2 in the glucose signaling pathway.


Assuntos
Basidiomycota/crescimento & desenvolvimento , Geranil-Geranildifosfato Geranil-Geraniltransferase/genética , Glucose/efeitos adversos , Basidiomycota/efeitos dos fármacos , Basidiomycota/metabolismo , Vias Biossintéticas , Meios de Cultura/química , Proteínas Fúngicas/genética , Perfilação da Expressão Gênica , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Xantofilas/metabolismo , beta Caroteno/metabolismo
14.
Int J Syst Evol Microbiol ; 69(8): 2471-2476, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31180314

RESUMO

A nitrite-tolerant denitrifying bacterium, strain GL14T, was isolated from the nitrification/denitrification bioreactor in our laboratory. Strain GL14T was Gram-stain-negative, rod-shaped, non-spore-forming, facultatively anaerobic and motile by means of a single polar flagellum. Phylogenetic analyses based on 16S rRNA gene sequences indicated that it was assigned to the genus Pseudomonas with highest 16S rRNA gene sequence similarity (98.77 %) to Pseudomonas xanthomarina DSM 18231T and Pseudomonassongnenensis NEAU-ST5-5T, followed by Pseudomonasstutzeri ATCC 17588T (98.42 %), Pseudomonaskunmingensis HL22-2T (98.29 %) and Pseudomonaszhaodongensis NEAU-ST5-21T (98.22 %). Phylogenetic analysis based on both concatenated sequences of the 16S rRNA gene and two housekeeping genes (gyrB and rpoD) and genome sequences further clarified the intrageneric phylogenetic position of strain GL14T. The DNA G+C content of GL14T was 63.1 mol%. The results of digital DNA-DNA hybridization (highest 24.2 % of DNA-DNA relatedness) based on the Genome-to-Genome Distance Calculator and average nucleotide identity analyses (highest 80.23 %) confirmed that the strain was distinctly delineated from known species of the genus Pseudomonas. The major fatty acids were summed feature 8 (C18 : 1ω7c/C18 : 1ω6c), C16 : 0, summed feature 3 (C16 : 1ω7c/C16 : 1ω6c), C17 : 0cyclo and C12 : 0. The respiratory quinone was ubiquinone Q-9. The major polar lipids were phosphatidylethanolamine, phosphatidylglycerol and diphosphatidylglycerol. Based on the phylogenetic, genomic, phenotypic and chemotaxonomic analyses, it was concluded that strain GL14T represents a novel species of the genus Pseudomonas, for which the name Pseudomonas nitrititolerans sp. nov. is proposed. The type strain is GL14T (=CGMCC 1.13874T=NBRC 113853T).


Assuntos
Reatores Biológicos/microbiologia , Nitritos/metabolismo , Filogenia , Pseudomonas/classificação , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Desnitrificação , Ácidos Graxos/química , Genes Bacterianos , Nitrificação , Hibridização de Ácido Nucleico , Fosfolipídeos/química , Pseudomonas/isolamento & purificação , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Ubiquinona/química
15.
Acta Pharmacol Sin ; 39(3): 357-370, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29072259

RESUMO

Barbaloin (10-ß-D-glucopyranosyl-1,8-dihydroxy-3-(hydroxymethyl)-9(10H)-anthracenone) is extracted from the aloe plant and has been reported to have anti-inflammatory, antitumor, antibacterial, and other biological activities. Here, we investigated the effects of barbaloin on cardiac electrophysiology, which has not been reported thus far. Cardiac action potentials (APs) and ionic currents were recorded in isolated rabbit ventricular myocytes using whole-cell patch-clamp technique. Additionally, the antiarrhythmic effect of barbaloin was examined in Langendorff-perfused rabbit hearts. In current-clamp recording, application of barbaloin (100 and 200 µmol/L) dose-dependently reduced the action potential duration (APD) and the maximum depolarization velocity (Vmax), and attenuated APD reverse-rate dependence (RRD) in ventricular myocytes. Furthermore, barbaloin (100 and 200 µmol/L) effectively eliminated ATX II-induced early afterdepolarizations (EADs) and Ca2+-induced delayed afterdepolarizations (DADs) in ventricular myocytes. In voltage-clamp recording, barbaloin (10-200 µmol/L) dose-dependently inhibited L-type calcium current (ICa.L) and peak sodium current (INa.P) with IC50 values of 137.06 and 559.80 µmol/L, respectively. Application of barbaloin (100, 200 µmol/L) decreased ATX II-enhanced late sodium current (INa.L) by 36.6%±3.3% and 71.8%±6.5%, respectively. However, barbaloin up to 800 µmol/L did not affect the inward rectifier potassium current (IK1) or the rapidly activated delayed rectifier potassium current (IKr) in ventricular myocytes. In Langendorff-perfused rabbit hearts, barbaloin (200 µmol/L) significantly inhibited aconitine-induced ventricular arrhythmias. These results demonstrate that barbaloin has potential as an antiarrhythmic drug.


Assuntos
Antracenos/farmacologia , Arritmias Cardíacas/prevenção & controle , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Aconitina/antagonistas & inibidores , Aconitina/farmacologia , Potenciais de Ação/efeitos dos fármacos , Animais , Arritmias Cardíacas/induzido quimicamente , Cálcio/farmacologia , Relação Dose-Resposta a Droga , Preparação de Coração Isolado , Miócitos Cardíacos/fisiologia , Técnicas de Patch-Clamp , Coelhos , Venenos de Escorpião/antagonistas & inibidores , Venenos de Escorpião/farmacologia
16.
Pharmacology ; 102(5-6): 253-261, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30138939

RESUMO

AIM: Sodium houttuyfonate (SH), a chemical compound originating from Houttuynia cordata, has been reported to have anti-inflammatory, antibacterial, and antifungal effects, as well as cardioprotective effects. In this study, we investigated the effects of SH on cardiac electrophysiology, because to the best of our knowledge, this issue has not been previously investigated. METHODS: We used the whole-cell patch-clamp technique to explore the effects of SH on peak sodium current (INa.P) and late sodium current (INa.L) in isolated rabbit ventricular myocytes. To test the drug safety of SH, we also investigated the effect of SH on rapidly activated delayed rectifier potassium current (IKr). RESULTS: SH (1, 10, 50, and 100 µmol/L) inhibited INa.P in a concentration-dependent manner with an IC50 of 78.89 µmol/L. In addition, SH (100 µmol/L) accelerated the steady state inactivation of INa.P. Moreover, 50 and 100 µmol/L SH inhibited Anemonia sulcata toxin II (ATX II)-increased INa.L by 30.1 and 57.1%, respectively. However, SH (50 and 100 µmol/L) only slightly affected IKr. CONCLUSIONS: The inhibitory effects of SH on ATX II-increased INa.L may underlie the electrophysiological mechanisms of the cardioprotective effects of SH; SH has the potential to be an effective and safe antiarrhythmic drug.


Assuntos
Alcanos/farmacologia , Venenos de Cnidários/antagonistas & inibidores , Miócitos Cardíacos/efeitos dos fármacos , Sulfitos/farmacologia , Canais de Sódio Disparados por Voltagem/metabolismo , Animais , Antiarrítmicos/farmacologia , Venenos de Cnidários/farmacologia , Ventrículos do Coração/citologia , Ventrículos do Coração/efeitos dos fármacos , Ventrículos do Coração/metabolismo , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Técnicas de Patch-Clamp , Coelhos , Canais de Sódio/metabolismo , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacologia
18.
Pacing Clin Electrophysiol ; 40(12): 1412-1425, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28972668

RESUMO

BACKGROUND: An increase in the late sodium current (INaL ) causes intracellular Na+ overload and subsequently intracellular Ca2+ ([Ca2+ ]i ) overload via the stimulated reverse Na+ -Ca2+ exchange (NCX). Wenxin Keli (WXKL) is an effective antiarrhythmic Chinese herb extract, but the underlying mechanisms are unclear. METHODS AND RESULTS: The INaL , NCX current (INCX ), L-type Ca2+ current (ICaL ), and action potentials were recorded using the whole-cell patch-clamp technique in rabbit ventricular myocytes. Myocyte [Ca2+ ]i transients were measured using a dual excitation fluorescence photomultiplier system. WXKL decreased the enhanced INaL , reverse INCX , diastolic [Ca2+ ]i , and the amplitude of Ca2+ transients induced by sea anemone toxin II (ATX II, a specific INaL channel opener) in a concentration-dependent manner. Hypoxia increased INaL , INCX , and diastolic [Ca2+ ]i , and decreased amplitude of [Ca2+ ]i transients. Hypoxia-reoxygenation aggravated these changes and induced spontaneous [Ca2+ ]i transients and hypercontraction in 86% cells (6/7). The application of WXKL during hypoxia or reoxygenation periods decreased the increased INaL , INCX , and diastolic [Ca2+ ]i , and prevented those events in 82% cells (9/11) under hypoxia-reoxygenation conditions. WXKL also inhibited the ICaL in a dose-dependent manner. Furthermore, WXKL shortened the action potential duration and completely abolished ATX II-induced early afterdepolarizations from 9/9 to /9. In isolated heart electrocardiogram recordings, WXKL inhibited ischemia-reperfusion induced ventricular premature beats and tachycardia. CONCLUSIONS: WXKL attenuated [Ca2+ ]i overload induced by hypoxia-reoxygenation in ventricular myocytes through inhibiting INaL and ICaL and prevents arrhythmias. This could, at least partly, contribute to the antiarrhythmic effects of WXKL.


Assuntos
Antiarrítmicos/farmacologia , Cálcio/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Oxigênio/metabolismo , Sódio/metabolismo , Animais , Hipóxia Celular/fisiologia , Feminino , Masculino , Coelhos
19.
Appl Microbiol Biotechnol ; 101(5): 2033-2041, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27858137

RESUMO

Psychrophilic enzymes display efficient activity at moderate or low temperatures (4-25 °C) and are therefore of great interest in biotechnological industries. We previously examined the crystal structure of BglU, a psychrophilic ß-glucosidase from the bacterium Micrococcus antarcticus, at 2.2 Å resolution. In structural comparison and sequence alignment with mesophilic (BglB) and thermophilic (GlyTn) counterpart enzymes, BglU showed much lower contents of Pro residue and of charged amino acids (particularly positively charged) on the accessible surface area. In the present study, we investigated the roles of specific amino acid residues in the cold adaptedness of BglU. Mutagenesis assays showed that the mutations G261R and Q448P increased optimal temperature (from 25 to 40-45 °C) at the expense of low-temperature activity, but had no notable effects on maximal activity or heat lability. Mutations A368P, T383P, and A389E significantly increased optimal temperature (from 25 to 35-40 °C) and maximal activity (~1.5-fold relative to BglU). Thermostability of A368P and A389E increased slightly at 30 °C. Mutations K163P, N228P, and H301A greatly reduced enzymatic activity-almost completely in the case of H301A. Low contents of Pro, Arg, and Glu are important factors contributing to BglU's psychrophilic properties. Our findings will be useful in structure-based engineering of psychrophilic enzymes and in production of mutants suitable for a variety of industrial processes (e.g., food production, sewage treatment) at cold or moderate temperatures.


Assuntos
Adaptação Fisiológica/genética , Proteínas de Bactérias/genética , Micrococcus/enzimologia , Micrococcus/metabolismo , beta-Glucosidase/genética , beta-Glucosidase/metabolismo , Sequência de Aminoácidos , Aminoácidos/genética , Proteínas de Bactérias/metabolismo , Temperatura Baixa , Estabilidade Enzimática , Micrococcus/genética , Mutagênese Sítio-Dirigida , Conformação Proteica , Alinhamento de Sequência
20.
Appl Microbiol Biotechnol ; 101(9): 3759-3768, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28074223

RESUMO

The bacterium Aeromonas salmonicida is the causative agent of furunculosis, a systemic, ubiquitous disease of fish in the salmon family, characterized by high mortality and morbidity. Probiotics are a promising approach for prevention of furunculosis in aquaculture. A bacterial strain with anti-A. salmonicida properties, Bacillus velezensis V4, was isolated and the mechanisms underlying these properties were investigated. Anti-A. salmonicida compounds present in cell-free supernatant of V4 were purified and structurally identified as members of the iturin, macrolactin, and difficidin groups. The compounds contributed jointly to inhibition of A. salmonicida, and the diversity of the compounds was related to the versatility of their mode of action. Addition of the compounds to A. salmonicida cell suspensions reduced cell density. Analyses by confocal microscopy and scanning electron microscopy revealed cell membrane disruption, deletion of cellular content, and cell lysis of A. salmonicida. The V4 genome was sequenced, and gene clusters involved in synthesis of anti-Aeromonas compounds were detected and identified. A possible probiotic effect on growth performance of Oncorhynchus mykiss (rainbow trout) was investigated by addition of 0, 1, and 3 % (v/w) V4. Relative to control, mortality was reduced 27.25 % in the 1 % addition group and 81.86 % in the 3 % addition group. Feed coefficient ratio was reduced 19.49 % and weight gain ratio was increased 71.22 % in the 1 % addition group. Our findings demonstrate that V4 is an effective probiotic strain in O. mykiss and has clear potential for both control of furunculosis and growth promotion of aquaculture animals.


Assuntos
Aeromonas salmonicida/crescimento & desenvolvimento , Antibiose , Bacillus/crescimento & desenvolvimento , Infecções Bacterianas/veterinária , Doenças dos Peixes/prevenção & controle , Oncorhynchus mykiss/microbiologia , Probióticos/administração & dosagem , Aeromonas salmonicida/efeitos dos fármacos , Aeromonas salmonicida/ultraestrutura , Animais , Antibacterianos/química , Antibacterianos/isolamento & purificação , Antibacterianos/farmacologia , Bacillus/isolamento & purificação , Bacillus/metabolismo , Infecções Bacterianas/prevenção & controle , Bacteriólise , Peso Corporal , Membrana Celular/efeitos dos fármacos , Membrana Celular/ultraestrutura , Genoma Bacteriano , Redes e Vias Metabólicas/genética , Microscopia Confocal , Microscopia Eletrônica de Varredura , Família Multigênica , Análise de Sequência de DNA , Análise de Sobrevida , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA