Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Phys Chem A ; 127(7): 1609-1618, 2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36780375

RESUMO

The alkaline hydrolysis reaction of energetic materials is important and complex. With improved performance, AMK_Mountain was used to systematically study the alkaline hydrolysis of the nitrocellulose monomer and hexogen. The reaction pathways showed that the nitrocellulose monomer produces the nitrate anion and nitrite anion differently, while hexogen only produces the nitrite anion. Electronic structure results at the M06-2X/6-311G(d,p)/PCM(Pauling) level showed that the nitrocellulose monomer and hexogen have a similar pathway in their main energy-releasing process (nitrite anion production): with electrostatic attraction effects after proton transfer, the nitrite anion dissociates from the original structure with a low barrier. Moreover, during the alkaline hydrolysis of the nitrocellulose monomer, the metastable intermediates after proton transfer may be directly generated following transition states that, structurally, tend to produce nitrite anions "proximal" to the proton transfer site and produce nitrate anions "distal" to the proton transfer site. Electronic structure analysis showed that representative metastable intermediates revealed that the charge transfer caused by electrostatic attraction may be the direct cause of these reactions.

2.
J Comput Chem ; 43(22): 1513-1523, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35567577

RESUMO

To improve the transition state (TS) search capability in complex chemical environments, AMK_Mountain is constructed based on the automated reaction mechanisms and kinetics (AutoMeKin) package. AMK_Mountain does not distinguish the reaction type of the TSs, which is beneficial to obtaining a more comprehensive reaction mechanism. In this study, the first step of the alkaline hydrolysis process of nitrocellulose monomer was adopted as the research object, and 730 possible initial configurations are constructed and 22 TSs pass high-level calculations. Energy difference and interaction region indicator reveal that the first step of alkaline hydrolysis is mainly the combination of nitrogen-containing functional groups at the positions α and ß with hydroxide anions, followed by the formation of nitric acid and the further loss of protons to form nitrate. Overall, in combination with GFN2 -xTB and ORCA, the AMK_Mountain technique provides a reliable method for the location of the TSs in complex environments.


Assuntos
Nitrogênio , Colódio , Hidrólise , Cinética
3.
Phys Chem Chem Phys ; 23(41): 23673-23683, 2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34642711

RESUMO

The automated reaction mechanisms and kinetics (AutoMeKin) program evolved from a transition state search using chemical dynamics simulations (TSSCDS). It combines a series of empirical, semi-empirical and ab initio calculation methods to provide a two-step transition state search process from low-level calculation to high-level calculation. However, in this process, with the lack of solution keywords, low-level calculation has the problem of low accuracy or high computational cost. To address this problem, the gau_xtb interface that combines the high efficiency of xTB and the comprehensiveness of Gaussian09 was incorporated into the AutoMeKin2020 in this work and after adding some keywords, the AMK-gau_xtb software was obtained. Meanwhile, to adapt to the interface, the MD sampling results used Quadratic Synchronous Transit 3 (QST3) for the low-level transition state search. As an application, the reaction in which the nitroso group is replaced by hydroxide anion during the alkaline hydrolysis of 2,4,6-trinitrotoluene (TNT) in the water phase was studied with AMK-gau_xtb. The results of Intrinsic Reaction Coordinate (IRC) calculations revealed that the reactions on the front side and back side are different, with higher energy barriers obtained for the reactions on the front side. In addition, the hydrogen atom of the hydroxide anion has a slightly higher energy barrier for motion toward the inside of the benzene ring than for motion out of the benzene ring. Examination of the transition state structures of the low-level and high-level results showed that all reactions involve the stretching and restoration of the benzene ring. This process will lead to the incorrect identification of several transition states by the gau_xtb-based low-level calculation, while high-level calculation eliminates these incorrect results. The results of this research showed that AMK-gau_xtb has high efficiency and high fault tolerance, and has potential for use in large-scale system transition state searches.

4.
Water Sci Technol ; 78(1-2): 415-423, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30101776

RESUMO

Dye wastewater has attracted significant attention because of its wide pH range and high content of color. In this work, the coagulation performances of cucurbit[8]uril for the removal of color from acid red 1 (AR1), orange II (OII), and Congo red (CR) dye wastewaters were investigated. Experimental results showed that color removal rates of greater than 95% for AR1, OII and CR were achieved at pH 6.0, when the dosage of cucurbit[8]uril was 1.51, 3.01 and 0.38 mmol·L-1, respectively. Under identical conditions, the color removal efficiencies of AR1 and CR were higher than OII, due to the larger molecular weights and more active hydroxyl and amino groups. Moreover, steady increases in AR1, OII and CR removal rates were recorded with increasing ionic strength. Such increases may be related to the reduction in thickness of the surface solvent membrane surrounding the dye colloids at high ionic strengths. Furthermore, Fourier transform infrared spectra demonstrated that no new bonds or functional groups were formed during coagulation, which indicates that the removal of AR1, OII and CR was primarily a physical process. The hydrogen bonds and inclusion complexes formed between cucurbit[8]uril and AR1, OII and CR contributed to the removal of color in coagulation predominantly.


Assuntos
Compostos Azo , Hidrocarbonetos Aromáticos com Pontes/química , Imidazóis/química , Poluentes Químicos da Água , Purificação da Água/métodos , Compostos Azo/análise , Compostos Azo/química , Compostos Azo/isolamento & purificação , Floculação , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química , Poluentes Químicos da Água/isolamento & purificação
5.
Waste Manag ; 102: 97-105, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31669679

RESUMO

Generally, the bio-treatment effluent of municipal solid waste incineration (MSWI) leachate was difficult to meet the local leachate discharge standards for chemical oxygen demand (COD) (100 mg/L), ammonia nitrogen (NH4+-N) (25 mg/L), and total nitrogen (TN) (40 mg/L), and advanced treatment (such as coagulation, membrane filtration, advanced oxidation) is required. However, the cost of advanced treatments is proportional to the concentration of the pollutant. Therefore, improved bio-treatment efficiency is the key to reduce the treatment cost of MSWI leachate. In this study, the up-flow anaerobic sludge blanket (UASB) -modified Bardenpho process was used for the treatment of MSWI leachate. The results showed that it was feasible to dilute the leachate by recirculation of the settling tank effluent, which has great significance in the bio-treatment efficiency. The treatment process achieved removal efficiencies of COD and NH4+-N of 97.5-99.5% and 99.3-99.7%, respectively. Adjustments to the operational conditions of the primary anoxic tank, such as adding an organic carbon source and increasing the hydraulic retention time and the nitrification reflux ratio resulted in a TN removal efficiency of 97.7-98.7%. Controlling the generation of dissolved organic nitrogen (DON) and increasing its removal efficiency significantly improved the TN removal efficiency. The concentrations of NH4+-N and TN in the settling tank effluent complied with the local leachate discharge standard, which minimized the cost of advanced treatment. The results provide new ideas for enhancing the bio-treatment efficiency of leachate and theoretical and technical support for reducing the cost of treatment.


Assuntos
Resíduos Sólidos , Poluentes Químicos da Água , Reatores Biológicos , Incineração , Nitrogênio , Esgotos , Eliminação de Resíduos Líquidos
6.
J Hazard Mater ; 371: 603-608, 2019 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-30878911

RESUMO

Military nitrocellulose waste is flammable and explosive, and thus requires safe disposal and resource utilization. The alkaline hydrolysis process is a potential treatment method for nitrocellulose waste. In this study, a reaction yield model of nitrocellulose alkaline hydrolysis reaction was studied. For this purpose, a theoretical reaction yield model of nitrocellulose alkaline hydrolysis was developed based on Fick's law and scanning electron microscopy analysis. Additionally, the reaction yield model was experimentally validated. The results revealed a linear relationship between the nitrocellulose alkaline hydrolysis rate of xNC and the reaction time of t, which is given by t/tf = xNC. The limiting step of the alkaline hydrolysis of nitrocellulose is the rate of diffusion of OH- through the large pore channels. Accordingly, the reaction rate of the nitrocellulose alkaline hydrolysis can be increased by increasing the KOH concentration, reaction temperature, and reducing the size of the nitrocellulose granules. Thus, this model provides theoretical and technical support for the safe disposal and resource utilization of nitrocellulose waste.

7.
Environ Sci Pollut Res Int ; 13(5): 328-32, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17067027

RESUMO

GOAL, SCOPE AND BACKGROUND: The polynitramines, hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), are important military explosives and regulated toxic hazardous compounds. Production, testing and use of the compounds has resulted in numerous acres of contaminated soils and groundwater near many munitions facilities. Economical and efficient methods for treatment of wastewater and cleanup of soils or groundwater containing RDX and HMX are needed. This study focuses on the photocatalytic treatment of RDX wastewater with nano-sized titanium dioxide (nano-TiO2) under simulated sunlight, whose intensity and wavelength are similar to that of the real sunlight in Xi'an at noon. The objective is to determine the potential for RDX destruction with nano-TiO2 in aqueous solution. METHODS: An activated carbon fiber (ACF) cloth-loaded with nano-TiO2 was put into the RDX containing solution, and the concentration of RDX was measured (by HPLC-UV) at regular time intervals under simulated sunlight. RESULTS: The RDX degradation percentage of the photocatalytic process is higher than that of Fenton oxidation before 80 min, equivalent after 80 min, and it reaches 95% or above after 120 min. The nano-TiO2 catalyst can be used repeatedly. DISCUSSION: The photocatalytic degradation kinetics of RDX under simulated sunlight can be described by a first-order reaction kinetics equation. The possible degradation mechanism of RDX was presented and the degradation performance was compared with that of biological method. CONCLUSIONS: It was demonstrated that the degradation of RDX wastewater is very effective with nano-TiO2 as the photocatalytic catalyst under simulated sunlight. The efficiency of the nano-TiO2 catalyst for RDX degradation under simulated sunlight is nearly identical to that of Fenton oxidation. RECOMMENDATIONS AND PERSPECTIVES: To date, a number of catalysts show poor absorption and utilization of sunlight, and still need ultraviolet light irradiation during wastewater degradation. The nano-TiO2 used in the described experiments features very good degradation of RDX under simulated sunlight, and the manufacturing costs are rather low (around 10 Euro/m2). Moreover, the degradation efficiency is higher compared to that of the biological method. This method exhibits great potential for practical applications owing to its easiness and low cost. If it can be applied extensively, the efficiency of wastewater treatment will be enhanced greatly.


Assuntos
Azocinas/química , Compostos Heterocíclicos com 1 Anel/química , Luz , Nanoestruturas/química , Titânio/química , Triazinas/química , Eliminação de Resíduos Líquidos/métodos , Catálise , Cinética , Fotoquímica , Poluentes Químicos da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA