Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Arterioscler Thromb Vasc Biol ; 44(10): e243-e261, 2024 10.
Artigo em Inglês | MEDLINE | ID: mdl-38989579

RESUMO

BACKGROUND: Evidence suggests that COVID-19 predisposes to cardiovascular diseases (CVDs). While monocytes/macrophages play a central role in the immunopathogenesis of atherosclerosis, less is known about their immunopathogenic mechanisms that lead to CVDs during COVID-19. Natural killer (NK) cells, which play an intermediary role during pathologies like atherosclerosis, are dysregulated during COVID-19. Here, we sought to investigate altered immune cells and their associations with CVD risk during severe COVID-19. METHODS: We measured plasma biomarkers of CVDs and determined phenotypes of circulating immune subsets using spectral flow cytometry. We compared these between patients with severe COVID-19 (severe, n=31), those who recovered from severe COVID-19 (recovered, n=29), and SARS-CoV-2-uninfected controls (controls, n=17). In vivo observations were supported using in vitro assays to highlight possible mechanistic links between dysregulated immune subsets and biomarkers during and after COVID-19. We performed multidimensional analyses of published single-cell transcriptome data of monocytes and NK cells during severe COVID-19 to substantiate in vivo findings. RESULTS: During severe COVID-19, we observed alterations in cardiometabolic biomarkers including oxidized-low-density lipoprotein, which showed decreased levels in severe and recovered groups. Severe patients exhibited dysregulated monocyte subsets, including increased frequencies of proinflammatory intermediate monocytes (also observed in the recovered) and decreased nonclassical monocytes. All identified NK-cell subsets in the severe COVID-19 group displayed increased expression of activation and tissue-resident markers, such as CD69 (cluster of differentiation 69). We observed significant correlations between altered immune subsets and plasma oxidized-low-density lipoprotein levels. In vitro assays revealed increased uptake of oxidized-low-density lipoprotein into monocyte-derived macrophages in the presence of NK cells activated by plasma of patients with severe COVID-19. Transcriptome analyses confirmed enriched proinflammatory responses and lipid dysregulation associated with epigenetic modifications in monocytes and NK cells during severe COVID-19. CONCLUSIONS: Our study provides new insights into the involvement of monocytes and NK cells in the increased CVD risk observed during and after COVID-19.


Assuntos
Biomarcadores , COVID-19 , Doenças Cardiovasculares , Células Matadoras Naturais , Monócitos , SARS-CoV-2 , Humanos , COVID-19/imunologia , COVID-19/sangue , COVID-19/complicações , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Monócitos/imunologia , Monócitos/metabolismo , Masculino , Pessoa de Meia-Idade , Feminino , Doenças Cardiovasculares/imunologia , Biomarcadores/sangue , Idoso , Índice de Gravidade de Doença , Estudos de Casos e Controles , Adulto , Lipoproteínas LDL/sangue , Fatores de Risco de Doenças Cardíacas , Células Cultivadas
2.
Infect Immun ; 92(7): e0004824, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38814083

RESUMO

Commensal bacteria are crucial in maintaining host physiological homeostasis, immune system development, and protection against pathogens. Despite their significance, the factors influencing persistent bacterial colonization and their impact on the host still need to be fully understood. Animal models have served as valuable tools to investigate these interactions, but most have limitations. The bacterial genus Neisseria, which includes both commensal and pathogenic species, has been studied from a pathogenicity to humans perspective but lacks models that study immune responses in the context of long-term persistence. Neisseria musculi, a recently described natural commensal of mice, offers a unique opportunity to study long-term host-commensal interactions. In this study, for the first time, we have used this model to study the transcriptional, phenotypic, and functional dynamics of immune cell signatures in the mucosal and systemic tissue of mice in response to N. musculi colonization. We found key genes and pathways vital for immune homeostasis in palate tissue, validated by flow cytometry of immune cells from the lung, blood, and spleen. This study offers a novel avenue for advancing our understanding of host-bacteria dynamics and may provide a platform for developing efficacious interventions against mucosal persistence by pathogenic Neisseria.


Assuntos
Neisseria , Animais , Camundongos , Neisseria/imunologia , Interações Hospedeiro-Patógeno/imunologia , Feminino , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Boca/microbiologia , Boca/imunologia
3.
Cell Immunol ; 403-404: 104865, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39226746

RESUMO

Bacille-Calmette-Guérin (BCG) is the only approved vaccine against Mycobacterium tuberculosis (MTB), offering protection not only against tuberculosis (TB) but also non-related infections. 'Trained immunity' of innate immune cells is considered one of the mechanisms of this broad protection derived through BCG. Here, we investigated the effect of BCG on Natural Killer (NK) cells, a key innate immune cell type, and their subsequent responses to mycobacterial and HIV antigens. We found that BCG-induced KLRG1+ NK cells exhibit significantly higher production of IFNγ, compared to KLRG1- cells, indicating their memory-like responses upon exposure to these antigens (p < 0.05). These findings may be important in regions of high burden of HIV and TB where BCG is routinely administered.


Assuntos
Vacina BCG , Infecções por HIV , Memória Imunológica , Interferon gama , Células Matadoras Naturais , Lectinas Tipo C , Mycobacterium tuberculosis , Receptores Imunológicos , Tuberculose , Células Matadoras Naturais/imunologia , Receptores Imunológicos/imunologia , Memória Imunológica/imunologia , Lectinas Tipo C/imunologia , Lectinas Tipo C/metabolismo , Humanos , Interferon gama/imunologia , Interferon gama/metabolismo , Vacina BCG/imunologia , Mycobacterium tuberculosis/imunologia , Tuberculose/imunologia , Infecções por HIV/imunologia , Antígenos de Bactérias/imunologia , Antígenos Virais/imunologia , Imunização/métodos
4.
Proc Natl Acad Sci U S A ; 118(34)2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34353890

RESUMO

Alum, used as an adjuvant in injected vaccines, promotes T helper 2 (Th2) and serum antibody (Ab) responses. However, it fails to induce secretory immunoglobulin (Ig) A (SIgA) in mucosal tissues and is poor in inducing Th1 and cell-mediated immunity. Alum stimulates interleukin 1 (IL-1) and the recruitment of myeloid cells, including neutrophils. We investigated whether neutrophil elastase regulates the adjuvanticity of alum, and whether a strategy targeting neutrophil elastase could improve responses to injected vaccines. Mice coadministered a pharmacological inhibitor of elastase, or lacking elastase, developed high-affinity serum IgG and IgA antibodies after immunization with alum-adsorbed protein vaccines, including the spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-Cov-2). These mice also developed broader antigen-specific CD4+ T cell responses, including high Th1 and T follicular helper (Tfh) responses. Interestingly, in the absence of elastase activity, mucosal SIgA responses were induced after systemic immunization with alum as adjuvant. Importantly, lack or suppression of elastase activity enhanced the magnitude of anti-SARS-CoV-2 spike subunit 1 (S1) antibodies, and these antibodies reacted with the same epitopes of spike 1 protein as sera from COVID-19 patients. Therefore, suppression of neutrophil elastase could represent an attractive strategy for improving the efficacy of alum-based injected vaccines for the induction of broad immunity, including mucosal immunity.


Assuntos
Adjuvantes Imunológicos/farmacologia , Compostos de Alúmen/farmacologia , COVID-19/imunologia , COVID-19/terapia , Inibidores Enzimáticos/farmacologia , Elastase de Leucócito/antagonistas & inibidores , SARS-CoV-2/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Formação de Anticorpos/efeitos dos fármacos , COVID-19/metabolismo , Células HEK293 , Humanos , Imunidade Inata/efeitos dos fármacos , Imunidade Inata/imunologia , Imunidade nas Mucosas/efeitos dos fármacos , Imunidade nas Mucosas/imunologia , Imunoglobulina A/imunologia , Elastase de Leucócito/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , SARS-CoV-2/efeitos dos fármacos , Glicoproteína da Espícula de Coronavírus/imunologia , Suínos , Células Th1/imunologia , Tratamento Farmacológico da COVID-19
6.
PLoS Pathog ; 16(3): e1008377, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32163525

RESUMO

The recombinant Canarypox ALVAC-HIV/gp120/alum vaccine regimen was the first to significantly decrease the risk of HIV acquisition in humans, with equal effectiveness in both males and females. Similarly, an equivalent SIV-based ALVAC vaccine regimen decreased the risk of virus acquisition in Indian rhesus macaques of both sexes following intrarectal exposure to low doses of SIVmac251. Here, we demonstrate that the ALVAC-SIV/gp120/alum vaccine is also efficacious in female Chinese rhesus macaques following intravaginal exposure to low doses of SIVmac251 and we confirm that CD14+ classical monocytes are a strong correlate of decreased risk of virus acquisition. Furthermore, we demonstrate that the frequency of CD14+ cells and/or their gene expression correlates with blood Type 1 CD4+ T helper cells, α4ß7+ plasmablasts, and vaginal cytocidal NKG2A+ cells. To better understand the correlate of protection, we contrasted the ALVAC-SIV vaccine with a NYVAC-based SIV/gp120 regimen that used the identical immunogen. We found that NYVAC-SIV induced higher immune activation via CD4+Ki67+CD38+ and CD4+Ki67+α4ß7+ T cells, higher SIV envelope-specific IFN-γ producing cells, equivalent ADCC, and did not decrease the risk of SIVmac251 acquisition. Using the systems biology approach, we demonstrate that specific expression profiles of plasmablasts, NKG2A+ cells, and monocytes elicited by the ALVAC-based regimen correlated with decreased risk of virus acquisition.


Assuntos
Células Matadoras Naturais/imunologia , Monócitos/imunologia , Vacinas contra a SAIDS/imunologia , Vírus da Imunodeficiência Símia/imunologia , Células Th1/imunologia , Vacinação , Vagina/imunologia , Vacinas Virais/imunologia , Animais , Feminino , Células Matadoras Naturais/patologia , Macaca mulatta , Monócitos/patologia , Células Th1/patologia
7.
J Virol ; 94(6)2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-31896599

RESUMO

Immunization with recombinant ALVAC/gp120 alum vaccine provided modest protection from human immunodeficiency virus type 1 (HIV-1) and simian immunodeficiency virus (SIV) acquisition in humans and macaques. Vaccine-mediated protection was associated with the elicitation of IgG against the envelope V2 loop and of envelope-specific CD4+ T cell responses. We hypothesized that the simultaneous expression of the costimulatory molecule CD40L (CD154) by the ALVAC-HIV vector could increase both protective humoral and cellular responses. We engineered an ALVAC-SIV coexpressing CD40L with SIVmac251 (ALVAC-SIV/CD40L) gag, pol, and env genes. We compared its immunogenicity in macaques with that of a canonical ALVAC-SIV, with both given as a vector-prime/gp120 in alum boost strategy. The ALVAC-SIV/CD40L was superior to the ALVAC-SIV regimen in inducing binding and tier 1 neutralizing antibodies against the gp120. The increase in humoral responses was associated with the expression of the membrane-bound form of the CD40L by CD4+ T cells in lymph nodes. Unexpectedly, the ALVAC-SIV/CD40L vector had a blunting effect on CD4+ Th1 helper responses and instead favored the induction of myeloid-derived suppressor cells, the immune-suppressive interleukin-10 (IL-10) cytokine, and the down-modulatory tryptophan catabolism. Ultimately, this strategy failed to protect macaques from SIV acquisition. Taken together, these results underlie the importance of balanced vaccine-induced activating versus suppressive immune responses in affording protection from HIV.IMPORTANCE CD40-CD40 ligand (CD40L) interaction is crucial for inducing effective cytotoxic and humoral responses against pathogens. Because of its immunomodulatory function, CD40L has been used to enhance immune responses to vaccines, including candidate vaccines for HIV. The only successful vaccine ever tested in humans utilized a strategy combining canarypox virus-based vector (ALVAC) together with an envelope protein (gp120) adjuvanted in alum. This strategy showed limited efficacy in preventing HIV-1/SIV acquisition in humans and macaques. In both species, protection was associated with vaccine-induced antibodies against the HIV envelope and CD4+ T cell responses, including type 1 antiviral responses. In this study, we tested whether augmenting CD40L expression by coexpressing it with the ALVAC vector could increase the protective immune responses. Although coexpression of CD40L did increase humoral responses, it blunted type 1 CD4+ T cell responses against the SIV envelope protein and failed to protect macaques from viral infection.


Assuntos
Vacinas contra a AIDS , Ligante de CD40 , Expressão Gênica , Vetores Genéticos , Proteína gp120 do Envelope de HIV , Imunogenicidade da Vacina , Vírus da Imunodeficiência Símia , Vacinas Virais , Vacinas contra a AIDS/genética , Vacinas contra a AIDS/imunologia , Animais , Ligante de CD40/genética , Ligante de CD40/imunologia , Vetores Genéticos/genética , Vetores Genéticos/imunologia , Células HEK293 , Proteína gp120 do Envelope de HIV/genética , Proteína gp120 do Envelope de HIV/imunologia , Humanos , Macaca mulatta , Vírus da Imunodeficiência Símia/genética , Vírus da Imunodeficiência Símia/imunologia , Vacinas Virais/genética , Vacinas Virais/imunologia
8.
PLoS Pathog ; 15(12): e1008121, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31794588

RESUMO

The ALVAC-HIV clade B/AE and equivalent SIV-based/gp120 + Alum vaccines successfully decreased the risk of virus acquisition in humans and macaques. Here, we tested the efficacy of HIV clade B/C ALVAC/gp120 vaccine candidates + MF59 or different doses of Aluminum hydroxide (Alum) against SHIV-Cs of varying neutralization sensitivity in macaques. Low doses of Alum induced higher mucosal V2-specific IgA that increased the risk of Tier 2 SHIV-C acquisition. High Alum dosage, in contrast, elicited serum IgG to V2 that correlated with a decreased risk of Tier 1 SHIV-C acquisition. MF59 induced negligible mucosal antibodies to V2 and an inflammatory profile with blood C-reactive Protein (CRP) levels correlating with neutralizing antibody titers. MF59 decreased the risk of Tier 1 SHIV-C acquisition. The relationship between vaccine efficacy and the neutralization profile of the challenge virus appear to be linked to the different immunological spaces created by MF59 and Alum via CXCL10 and IL-1ß, respectively.


Assuntos
Adjuvantes Imunológicos/farmacologia , Compostos de Alúmen/farmacologia , Anticorpos Neutralizantes/imunologia , Vacinas contra a SAIDS/química , Vacinas contra a SAIDS/imunologia , Vacinas contra a AIDS/química , Vacinas contra a AIDS/imunologia , Animais , Anticorpos Antivirais/imunologia , Feminino , Infecções por HIV , Macaca mulatta , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Vacinas Virais/química , Vacinas Virais/imunologia
9.
Lung ; 198(1): 157-161, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31807920

RESUMO

The contribution of T-cells after lung transplant (LTx) remains controversial with no current consensus of their role concerning chronic lung allograft dysfunction. Using flow cytometry to assess T-cell subsets of bronchoalveolar lavage fluid (BALF) in 16 cystic fibrosis (CF) LTx recipients, we identified a decline in CD4+ T-cell frequency and an increase in CD8+ T-cell frequency in patients who developed severe bronchiolitis obliterans syndrome (BOS) (N = 10) when comparing baseline (6 months post-LTx) and follow-up (most recent bronchoscopy-clinical or surveillance per protocol). Comparing BOS to No BOS cohorts, significant differences were found in CD4+ T-cell frequency [17.4 (12.5, 28.2) vs 46.6 (44.4, 48.4), p = 0.003] and CD8+ T-cell frequency [65.6 (62.8, 75.3) vs 39.2 (32.2, 43.3), p = 0.014], respectively. The mean difference of the CD4:CD8 ratio was 0.87 units lower (95% CI - 1.44 to - 0.30, p = 0.006) than patients without BOS, while the median difference of the CD4:CD8 ratio was 0.92 units lower (95% CI - 1.83 to - 0.009, p = 0.048). Therefore, our results suggest that T-cell profiles measured through flow cytometry of BALF in the CF LTx population are associated with the development of severe BOS. Further work is needed in larger patient populations to validate our findings and to determine if this is useful for recipients who underwent LTx for other indications.


Assuntos
Bronquiolite Obliterante/imunologia , Fibrose Cística/cirurgia , Transplante de Pulmão , Complicações Pós-Operatórias/imunologia , Subpopulações de Linfócitos T/imunologia , Linfócitos T/imunologia , Adolescente , Adulto , Bronquiolite Obliterante/epidemiologia , Líquido da Lavagem Broncoalveolar/citologia , Complexo CD3/imunologia , Relação CD4-CD8 , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Estudos de Casos e Controles , Feminino , Rejeição de Enxerto/prevenção & controle , Humanos , Imunofenotipagem , Imunossupressores/uso terapêutico , Masculino , Complicações Pós-Operatórias/epidemiologia , Índice de Gravidade de Doença , Adulto Jovem
10.
J Infect Dis ; 220(11): 1843-1847, 2019 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-31332447

RESUMO

Nontuberculous mycobacteria (NTM) infect children with increasing frequency worldwide. Using blood and lymph node tissue from children with NTM lymphadenitis, and uninfected lymph node tissue from community controls, we evaluated helper T (TH) cells in functional assays of TH1/TH17 differentiation and measured the concentration of their associated cytokines at the site of infection. Circulating TH cells from infected children were attenuated in their TH1/TH17 differentiation capacity and expressed less interferon γ and interleukin 17 after polyclonal stimulation. Similar differences were observed at the site of infection, where most cytokine concentrations were unchanged relative to controls. Our data are consistent with a model wherein TH1/TH17 differentiation is attenuated in NTM-infected children.


Assuntos
Diferenciação Celular , Infecções por Mycobacterium/patologia , Micobactérias não Tuberculosas/imunologia , Células Th1/imunologia , Células Th17/imunologia , Adolescente , Sangue/imunologia , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Humanos , Lactente , Recém-Nascido , Interferon gama/análise , Interleucina-17/análise , Linfonodos/imunologia , Masculino , Infecções por Mycobacterium/imunologia
11.
J Immunol ; 197(7): 2726-37, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27591322

RESUMO

The recombinant ALVAC vaccine coupled with the monomeric gp120/alum protein have decreased the risk of HIV and SIV acquisition. Ab responses to the V1/V2 regions have correlated with a decreased risk of virus acquisition in both humans and macaques. We hypothesized that the breadth and functional profile of Abs induced by an ALVAC/envelope protein regimen could be improved by substituting the monomeric gp120 boost, with the full-length single-chain (FLSC) protein. FLSC is a CD4-gp120 fusion immunogen that exposes cryptic gp120 epitopes to the immune system. We compared the immunogenicity and relative efficiency of an ALVAC-SIV vaccine boosted either with bivalent FLSC proteins or with monomeric gp120 in alum. FLSC was superior to monomeric gp120 in directing Abs to the C3 α2 helix, the V5 loop, and the V3 region that contains the putative CCR5 binding site. In addition, FLSC boosting elicited significantly higher binding Abs to V2 and increased both the Ab-dependent cellular cytotoxicity activity and the breadth of neutralizing Abs. However, the FLSC vaccine regimen demonstrated only a trend in vaccine efficacy, whereas the monomeric gp120 regimen significantly decreased the risk of SIVmac251 acquisition. In both vaccine regimens, anti-V2 Abs correlated with a decreased risk of virus acquisition but differed with regard to systemic or mucosal origin. In the FLSC regimen, serum Abs to V2 correlated, whereas in the monomeric gp120 regimen, V2 Abs in rectal secretions, the site of viral challenge, were associated with efficacy.


Assuntos
Anticorpos Antivirais/imunologia , Antígenos CD4/imunologia , Produtos do Gene env/imunologia , Vacinas contra a SAIDS/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Vacinas Virais/imunologia , Animais , Antígenos CD4/química , Linhagem Celular , Produtos do Gene env/química , Macaca mulatta , Síndrome de Imunodeficiência Adquirida dos Símios/prevenção & controle
12.
J Immunol ; 193(12): 6172-83, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25398324

RESUMO

The human papillomavirus pseudovirions (HPV-PsVs) approach is an effective gene-delivery system that can prime or boost an immune response in the vaginal tract of nonhuman primates and mice. Intravaginal vaccination with HPV-PsVs expressing SIV genes, combined with an i.m. gp120 protein injection, induced humoral and cellular SIV-specific responses in macaques. Priming systemic immune responses with i.m. immunization with ALVAC-SIV vaccines, followed by intravaginal HPV-PsV-SIV/gp120 boosting, expanded and/or recruited T cells in the female genital tract. Using a stringent repeated low-dose intravaginal challenge with the highly pathogenic SIVmac251, we show that although these regimens did not demonstrate significant protection from virus acquisition, they provided control of viremia in a number of animals. High-avidity Ab responses to the envelope gp120 V1/V2 region correlated with delayed SIVmac251 acquisition, whereas virus levels in mucosal tissues were inversely correlated with antienvelope CD4(+) T cell responses. CD8(+) T cell depletion in animals with controlled viremia caused an increase in tissue virus load in some animals, suggesting a role for CD8(+) T cells in virus control. This study highlights the importance of CD8(+) cells and antienvelope CD4(+) T cells in curtailing virus replication and antienvelope V1/V2 Abs in preventing SIVmac251 acquisition.


Assuntos
Anticorpos Antivirais/imunologia , Fragmentos de Peptídeos/imunologia , Vírus da Imunodeficiência Símia/imunologia , Subpopulações de Linfócitos T/imunologia , Vagina/imunologia , Proteínas do Envelope Viral/imunologia , Viremia/imunologia , Alphapapillomavirus/genética , Animais , Especificidade de Anticorpos/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Modelos Animais de Doenças , Feminino , Vetores Genéticos/genética , Depleção Linfocítica , Macaca mulatta , Dados de Sequência Molecular , Mucosa/imunologia , Mucosa/virologia , Vacinas contra a SAIDS/genética , Vacinas contra a SAIDS/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/prevenção & controle , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/genética , Subpopulações de Linfócitos T/virologia , Vacinação , Vacinas de DNA/genética , Vacinas de DNA/imunologia , Vagina/virologia , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/genética , Viremia/prevenção & controle , Viremia/virologia
14.
Clin Immunol ; 155(1): 91-107, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25229164

RESUMO

To identify the most promising vaccine candidates for combinatorial strategies, we compared five SIV vaccine platforms including recombinant canary pox virus ALVAC, replication-competent adenovirus type 5 host range mutant RepAd, DNA, modified vaccinia Ankara (MVA), peptides and protein in distinct combinations. Three regimens used viral vectors (prime or boost) and two regimens used plasmid DNA. Analysis at necropsy showed that the DNA-based vaccine regimens elicited significantly higher cellular responses against Gag and Env than any of the other vaccine platforms. The T cell responses induced by most vaccine regimens disseminated systemically into secondary lymphoid tissues (lymph nodes, spleen) and effector anatomical sites (including liver, vaginal tissue), indicative of their role in viral containment at the portal of entry. The cellular and reported humoral immune response data suggest that combination of DNA and viral vectors elicits a balanced immunity with strong and durable responses able to disseminate into relevant mucosal sites.


Assuntos
Imunidade Celular , Vírus da Imunodeficiência Símia/imunologia , Vacinas Virais/imunologia , Animais , Antígenos Virais/imunologia , Linfócitos T CD8-Positivos , Células Cultivadas , Feminino , Macaca mulatta
15.
Clin Immunol ; 153(2): 308-22, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24907411

RESUMO

Combinatorial HIV/SIV vaccine approaches targeting multiple arms of the immune system might improve protective efficacy. We compared SIV-specific humoral immunity induced in rhesus macaques by five vaccine regimens. Systemic regimens included ALVAC-SIVenv priming and Env boosting (ALVAC/Env); DNA immunization; and DNA plus Env co-immunization (DNA&Env). RepAd/Env combined mucosal replication-competent Ad-env priming with systemic Env boosting. A Peptide/Env regimen, given solely intrarectally, included HIV/SIV peptides followed by MVA-env and Env boosts. Serum antibodies mediating neutralizing, phagocytic and ADCC activities were induced by ALVAC/Env, RepAd/Env and DNA&Env vaccines. Memory B cells and plasma cells were maintained in the bone marrow. RepAd/Env vaccination induced early SIV-specific IgA in rectal secretions before Env boosting, although mucosal IgA and IgG responses were readily detected at necropsy in ALVAC/Env, RepAd/Env, DNA&Env and DNA vaccinated animals. Our results suggest that combined RepAd priming with ALVAC/Env or DNA&Env regimen boosting might induce potent, functional, long-lasting systemic and mucosal SIV-specific antibodies.


Assuntos
Imunidade nas Mucosas/imunologia , Vacinas contra a SAIDS/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Vírus da Imunodeficiência Símia/imunologia , Vacinação/métodos , Vacinas contra a AIDS/administração & dosagem , Vacinas contra a AIDS/imunologia , Animais , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Citotoxicidade Celular Dependente de Anticorpos/imunologia , Quimioterapia Combinada , ELISPOT , Produtos do Gene env/imunologia , Humanos , Imunoglobulina A/sangue , Imunoglobulina A/imunologia , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Macaca mulatta , Vacinas contra a SAIDS/administração & dosagem , Síndrome de Imunodeficiência Adquirida dos Símios/prevenção & controle , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/fisiologia , Fatores de Tempo , Vacinas de DNA/administração & dosagem , Vacinas de DNA/imunologia , Vacinas de Subunidades Antigênicas/administração & dosagem , Vacinas de Subunidades Antigênicas/imunologia
16.
bioRxiv ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38798447

RESUMO

Antibody-dependent cell-mediated cytotoxicity, mediated by natural killer (NK) cells and antibodies, emerged as a secondary correlate of protection in the RV144 HIV vaccine clinical trial, the only vaccine thus far demonstrating some efficacy in human. Therefore, leveraging NK cells with enhanced cytotoxic effector responses may bolster vaccine induced protection against HIV. Here, we investigated the effect of orally administering indole-3-carbinol (I3C), an aryl hydrocarbon receptor (AHR) agonist, as an adjuvant to an RV144-like vaccine platform in a mouse model. We demonstrate the expansion of KLRG1-expressing NK cells induced by the vaccine together with I3C. This NK cell subset exhibited enhanced vaccine antigen-specific cytotoxic memory-like features. Our study underscores the potential of incorporating I3C as an oral adjuvant to HIV vaccine platforms to enhance antigen-specific (memory-like) cytotoxicity of NK cells against HIV-infected cells. This approach may contribute to enhancing the protective efficacy of HIV preventive vaccines against HIV acquisition.

17.
Helicobacter ; 18(6): 433-43, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23895367

RESUMO

BACKGROUND: Cytolethal distending toxin (CDT) is the only known virulence factor found in H. hepaticus, the cause of chronic typhlocolitis and hepatitis leading to colonic and hepatocellular carcinomas in mice. Interaction of the tripartite polypeptide CdtA, CdtB, and CdtC subunits produced by H. hepaticus CDT (HhepCDT) causes cell cycle arrest and apoptotic death of cultured cells; however, the contribution of individual subunit to these processes has not been investigated. MATERIALS AND METHODS: The temporal relationship between cell cycle and apoptotic death of human epithelial HeLa and INT407 cells intoxicated with HhepCDT holotoxin or reconstituted recombinant HhepCDT was compared by flow cytometry. The genotoxic activity of individual and combinations of recombinant HhepCDT protein subunits or increasing concentrations of individual recombinant HhepCDT protein subunits transfected into HeLa cells was assessed at 72 hours post-treatment by flow cytometry. RESULTS: Similar time course of HhepCDT-induced G2 /M cell cycle arrest and apoptotic death was found with both cell lines which reached a maximum at 72 hours. The presence of all three HhepCDT subunits was required for maximum cell cycle arrest and apoptosis of both cell lines. Transfection of HeLa cells with HhepCdtB, but not with HhepCdtA or HhepCdtC, resulted in a dose-dependent G2 /M arrest and apoptotic death. CONCLUSION: All three subunits of HhepCDT are required for maximum epithelial cell cycle arrest and progression to apoptotic death, and HhepCdtB subunit alone is necessary and sufficient for epithelial cell genotoxicity.


Assuntos
Apoptose/efeitos dos fármacos , Toxinas Bacterianas/toxicidade , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Células Epiteliais/citologia , Infecções por Helicobacter/fisiopatologia , Helicobacter hepaticus/metabolismo , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Linhagem Celular , Células Epiteliais/efeitos dos fármacos , Infecções por Helicobacter/microbiologia , Helicobacter hepaticus/química , Humanos , Dados de Sequência Molecular
18.
Front Immunol ; 14: 1201677, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37671159

RESUMO

HIV-infected patients are at higher risk of developing oral mucosal infection and Epstein-Barr virus (EBV)-associated B cell malignancies. However, the potential role of oral immunity in the pathogenesis of oral lesions is unknown. Tonsils are oral-pharyngeal mucosal-associated lymphoid tissues that play an important role in oral mucosal immunity. In this study, we investigated the changes of innate and adaptive immune cells in macaque tonsils during chronic SIV infection. We found significantly higher frequencies of classical monocytes, CD3+CD56+ (NKT-like) cells, CD3+CD4+CD8+ (DP), and CD161+ CD4 T cells in tonsils from chronic infected compared to naïve animals. On the contrary, intermediate monocytes and CD3+CD4-CD8- (DN) cells were lower in chronic SIV-infected macaques. We further confirmed a recently described small B-cell subset, NKB cells, were higher during chronic infection. Furthermore, both adaptive and innate cells showed significantly higher TNF-α and cytotoxic marker CD107a, while IL-22 production was significantly reduced in innate and adaptive immune cells in chronic SIV-infected animals. A dramatic reduction of IFN-γ production by innate immune cells might indicate enhanced susceptibility to EBV infection and potential transformation of B cells in the tonsils. In summary, our observation shows that the SIV-associated immune responses are distinct in the tonsils compared to other mucosal tissues. Our data extends our understanding of the oral innate immune system during SIV infection and could aid future studies in evaluating the role of tonsillar immune cells during HIV-associated oral mucosal infections.


Assuntos
Infecções por Vírus Epstein-Barr , Infecção Persistente , Animais , Herpesvirus Humano 4 , Mucosa Bucal , Tonsila Palatina
19.
Vet Med Sci ; 9(1): 13-24, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36516308

RESUMO

BACKGROUND: Reverse zoonoses occur because of interactions between humans and animals. Homology of ACE-2 cell receptors in different hosts and high mutation rate of SARS-CoV-2 enhance viral transmission among species. OBJECTIVES: This study aimed to investigate spillover of SARS-CoV-2 between humans and companion animals. METHODS: A cross-sectional study was constructed using nasopharyngeal/oropharyngeal swabs, serum and blood samples collected from 66 companion animals (33 cats and 33 dogs) that were in contact with SARS-CoV-2-positive owners from December 2020 to March 2021. Swabs were screened by rRT-PCR and some positive cases were confirmed by partial spike gene sequencing. Clinical pathology and pathological studies were also performed. RESULTS: Our findings revealed that 30% of cats (10/33) and 24% of dogs (8/33) were SARS-CoV-2 positive. While 33% of these animals were asymptomatic (6/18), 28% showed mild respiratory signs (5/18) and 39% displayed severe respiratory signs (7/18) including 4 dead cats 40% (4/10). Partial spike gene sequencing of 6 positive samples collected in December 2020 were identical to SARS-CoV-2 that was detected in humans in Egypt in that time frame. Clinical pathology findings revealed thrombocytopenia, lymphocytopenia, as well as elevated levels of D-dimer, LDH, CRP, and ferritin. Post-mortem and histopathological examinations illustrated multisystemic effects. CONCLUSIONS: There is a potential occurrence of SARS-CoV-2 spillover between humans and pet animals. IMPACTS: The present study highlighted the potential occurrence of SARS-CoV-2 spillover between humans and their companion animals. Biosecurity measures should be applied to decrease spread of SARS-CoV-2 among humans and pet animals.


Assuntos
COVID-19 , Doenças do Cão , Animais , Cães , Humanos , COVID-19/epidemiologia , COVID-19/veterinária , Estudos Transversais , Doenças do Cão/epidemiologia , Egito/epidemiologia , Animais de Estimação , SARS-CoV-2 , Gatos , Zoonoses Virais
20.
medRxiv ; 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37986784

RESUMO

Human immunodeficiency virus (HIV) is associated with persistent immune activation and dysfunction in people with HIV despite treatment with antiretroviral therapy (ART). Modulation of the immune system may be driven by: low-level HIV replication, co-pathogens, gut dysbiosis /translocation, altered lipid profiles, and ART toxicities. In addition, perinatally acquired HIV (PHIV) and lifelong ART may alter the development and function of the immune system. Our preliminary data and published literature suggest reprogramming innate immune cells may accelerate aging and increase the risk for future end-organ complications, including cardiovascular disease (CVD). The exact mechanisms, however, are currently unknown. Natural killer (NK) cells are a highly heterogeneous cell population with divergent functions. They play a critical role in HIV transmission and disease progression in adults. Recent studies suggest the important role of NK cells in CVDs; however, little is known about NK cells and their role in HIV-associated cardiovascular risk in PHIV adolescents. Here, we investigated NK cell subsets and their potential role in atherogenesis in PHIV adolescents compared to HIV-negative adolescents in Uganda. Our data suggest, for the first time, that activated NK subsets in PHIV adolescents may contribute to atherogenesis by promoting plasma oxidized low-density lipoprotein (Ox-LDL) uptake by vascular macrophages.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA