Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 18(5): e2101323, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34825472

RESUMO

The configurational complexity and distinct local atomic environments of high entropy oxides remain largely unexplored, leaving structure-property relationships and the hypothesis that the family offers rich tunability for applications ambiguous. This work investigates the influence of cation size and materials synthesis in determining the resulting structure and magnetic properties of a family of high entropy rare-earth zirconates (HEREZs, nominal composition RE2 Zr2 O7 with RE = rare-earth element combinations including Eu, Gd, Tb, Dy, Ho, La, or Sc). The structural characterization of the series is examined through synchrotron X-ray diffraction and pair distribution function analysis, and electron microscopy, demonstrating average defect-fluorite structures with considerable local disorder, in all samples. The surface morphology and particle sizes are found to vary significantly with preparation method, with irregular micron-sized particles formed by high temperature sintering routes, spherical nanoparticles resulting from chemical co-precipitation methods, and porous nanoparticle agglomerates resulting from polymer steric entrapment synthesis. In agreement with the disordered cation distribution found across all samples, magnetic measurements indicate that all synthesized HEREZs show frustrated magnetic behavior, as seen in a number of single-component RE2 Zr2 O7 pyrochlore oxides. These findings advance the understanding of the local structure of high entropy oxides and demonstrate strategies for designing nanostructured morphologies in the class.

2.
Sci Rep ; 12(1): 21427, 2022 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-36503913

RESUMO

High traffic touch surfaces such as doorknobs, countertops, and handrails can be transmission points for the spread of pathogens, emphasizing the need to develop materials that actively self-sanitize. Metals are frequently used for these surfaces due to their durability, but many metals also possess antimicrobial properties which function through a variety of mechanisms. This work investigates metallic alloys comprised of several metals which individually possess antimicrobial properties, with the target of achieving broad-spectrum, rapid sanitation through synergistic activity. An entropy-motivated stabilization paradigm is proposed to prepare scalable alloys of copper, silver, nickel and cobalt. Using combinatorial sputtering, thin-film alloys were prepared on 100 mm wafers with ≈50% compositional grading of each element across the wafer. The films were then annealed and investigated for alloy stability. Antimicrobial activity testing was performed on both the as-grown alloys and the annealed films using four microorganisms-Phi6, MS2, Bacillus subtilis and Escherichia coli-as surrogates for human viral and bacterial pathogens. Testing showed that after 30 s of contact with some of the test alloys, Phi6, an enveloped, single-stranded RNA bacteriophage that serves as a SARS-CoV-2 surrogate, was reduced up to 6.9 orders of magnitude (> 99.9999%). Additionally, the non-enveloped, double-stranded DNA bacteriophage MS2, and the Gram-negative E. coli and Gram-positive B. subtilis bacterial strains showed a 5.0, 6.4, and 5.7 log reduction in activity after 30, 20 and 10 min, respectively. Antimicrobial activity in the alloy samples showed a strong dependence on the composition, with the log reduction scaling directly with the Cu content. Concentration of Cu by phase separation after annealing improved activity in some of the samples. The results motivate a variety of themes which can be leveraged to design ideal antimicrobial surfaces.


Assuntos
Anti-Infecciosos , COVID-19 , Humanos , Ligas/farmacologia , Escherichia coli , SARS-CoV-2 , Anti-Infecciosos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA