Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Bioinformatics ; 39(12)2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-38070153

RESUMO

SUMMARY: Neural morphology, the branching geometry of brain cells, is an essential cellular substrate of nervous system function and pathology. Despite the accelerating production of digital reconstructions of neural morphology, the public accessibility of data remains a core issue in neuroscience. Deficiencies in the availability of existing data create redundancy of research efforts and limit synergy. We carried out a comprehensive bibliometric analysis of neural morphology publications to quantify the impact of data sharing in the neuroscience community. Our findings demonstrate that sharing digital reconstructions of neural morphology via NeuroMorpho.Org leads to a significant increase of citations to the original article, thus directly benefiting authors. The rate of data reusage remains constant for at least 16 years after sharing (the whole period analyzed), altogether nearly doubling the peer-reviewed discoveries in the field. Furthermore, the recent availability of larger and more numerous datasets fostered integrative applications, which accrue on average twice the citations of re-analyses of individual datasets. We also released an open-source citation tracking web-service allowing researchers to monitor reusage of their datasets in independent peer-reviewed reports. These results and tools can facilitate the recognition of shared data reuse for merit evaluations and funding decisions. AVAILABILITY AND IMPLEMENTATION: The application is available at: http://cng-nmo-dev3.orc.gmu.edu:8181/. The source code at https://github.com/HerveEmissah/nmo-authors-app and https://github.com/HerveEmissah/nmo-bibliometric-analysis.


Assuntos
Neurociências , Neurociências/métodos , Disseminação de Informação , Neurônios , Software , Encéfalo
2.
J Neurosci ; 41(5): 927-936, 2021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-33472826

RESUMO

High digital connectivity and a focus on reproducibility are contributing to an open science revolution in neuroscience. Repositories and platforms have emerged across the whole spectrum of subdisciplines, paving the way for a paradigm shift in the way we share, analyze, and reuse vast amounts of data collected across many laboratories. Here, we describe how open access web-based tools are changing the landscape and culture of neuroscience, highlighting six free resources that span subdisciplines from behavior to whole-brain mapping, circuits, neurons, and gene variants.


Assuntos
Acesso à Informação , Encéfalo/fisiologia , Internet/tendências , Rede Nervosa/fisiologia , Neurônios/fisiologia , Animais , Encéfalo/citologia , Conjuntos de Dados como Assunto/tendências , Redes Reguladoras de Genes/fisiologia , Humanos , Rede Nervosa/citologia
3.
FASEB Bioadv ; 6(7): 207-221, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38974113

RESUMO

The tree-like morphology of neurons and glia is a key cellular determinant of circuit connectivity and metabolic function in the nervous system of essentially all animals. To elucidate the contribution of specific cell types to both physiological and pathological brain states, it is important to access detailed neuroanatomy data for quantitative analysis and computational modeling. NeuroMorpho.Org is the largest online collection of freely available digital neural reconstructions and related metadata and is continuously updated with new uploads. Earlier in the project, we released multiple datasets together yearly, but this process caused an average delay of several months in making the data public. Moreover, in the past 5 years, >80% of invited authors agreed to share their data with the community via NeuroMorpho.Org, up from <20% in the first 5 years of the project. In the same period, the average number of reconstructions per publication increased 600%, creating the need for automatic processing to release more reconstructions in less time. The progressive automation of our pipeline enabled the transition to agile releases of individual datasets as soon as they are ready. The overall time from data identification to public sharing decreased by 63.7%; 78% of the datasets are now released in less than 3 months with an average workflow duration below 40 days. Furthermore, the mean processing time per reconstruction dropped from 3 h to 2 min. With these continuous improvements, NeuroMorpho.Org strives to forge a positive culture of open data. Most importantly, the new, original research enabled through reuse of datasets across the world has a multiplicative effect on science discovery, benefiting both authors and users.

4.
bioRxiv ; 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38562736

RESUMO

The tree-like morphology of neurons and glia is a key cellular determinant of circuit connectivity and metabolic function in the nervous system of essentially all animals. To elucidate the contribution of specific cell types to both physiological and pathological brain states, it is important to access detailed neuroanatomy data for quantitative analysis and computational modeling. NeuroMorpho.Org is the largest online collection of freely available digital neural reconstructions and related metadata and is continuously updated with new uploads. Earlier in the project, we released multiple datasets together yearly, but this process caused an average delay of several months in making the data public. Moreover, in the past 5 years, >80% of invited authors agreed to share their data with the community via NeuroMorpho.Org, up from <20% in the first 5 years of the project. In the same period, the average number of reconstructions per publication increased 600%, creating the need for automatic processing to release more reconstructions in less time. The progressive automation of our pipeline enabled the transition to agile releases of individual datasets as soon as they are ready. The overall time from data identification to public sharing decreased by 63.7%; 78% of the datasets are now released in less than 3 months with an average workflow duration below 40 days. Furthermore, the mean processing time per reconstruction dropped from 3 hours to 2 minutes. With these continuous improvements, NeuroMorpho.Org strives to forge a positive culture of open data. Most importantly, the new, original research enabled through reuse of datasets across the world has a multiplicative effect on science discovery, benefiting both authors and users.

5.
bioRxiv ; 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37745378

RESUMO

Motivation: Neural morphology, the branching geometry of neurons and glia in the nervous system, is an essential cellular substrate of brain function and pathology. Despite the accelerating production of digital reconstructions of neural morphology in laboratories worldwide, the public accessibility of data remains a core issue in neuroscience. Deficiencies in the availability of existing data create redundancy of research efforts and prevent researchers from building on others' work. Data sharing complements the development of computational resources and literature mining tools to accelerate scientific discovery. Results: We carried out a comprehensive bibliometric analysis of neural morphology publications to quantify the impact of data sharing in the neuroscience community. Our findings demonstrate that sharing digital reconstructions of neural morphology via the NeuroMorpho.Org online repository leads to a significant increase of citations to the original article, thus directly benefiting the authors. Moreover, the rate of data reusage remains constant for at least 16 years after sharing (the whole period analyzed), altogether nearly doubling the peer-reviewed discoveries in the field. Furthermore, the recent availability of larger and more numerous datasets fostered integrative meta-analysis applications, which accrue on average twice the citations of re-analyses of individual datasets. We also designed and deployed an open-source citation tracking web-service that allows researchers to monitor reusage of their datasets in independent peer-reviewed reports. These results and the released tool can facilitate the recognition of shared data reuse for promotion and tenure considerations, merit evaluations, and funding decisions.

6.
Nat Commun ; 14(1): 7429, 2023 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-37973857

RESUMO

Digital reconstructions provide an accurate and reliable way to store, share, model, quantify, and analyze neural morphology. Continuous advances in cellular labeling, tissue processing, microscopic imaging, and automated tracing catalyzed a proliferation of software applications to reconstruct neural morphology. These computer programs typically encode the data in custom file formats. The resulting format heterogeneity severely hampers the interoperability and reusability of these valuable data. Among these many alternatives, the SWC file format has emerged as a popular community choice, coalescing a rich ecosystem of related neuroinformatics resources for tracing, visualization, analysis, and simulation. This report presents a standardized specification of the SWC file format. In addition, we introduce xyz2swc, a free online service that converts all 26 reconstruction formats (and 72 variations) described in the scientific literature into the SWC standard. The xyz2swc service is available open source through a user-friendly browser interface ( https://neuromorpho.org/xyz2swc/ui/ ) and an Application Programming Interface (API).


Assuntos
Ecossistema , Software , Simulação por Computador , Neurônios , Publicações
7.
Neurosci Res ; 181: 39-45, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35580795

RESUMO

Most functions of the nervous system depend on neuronal and glial morphology. Continuous advances in microscopic imaging and tracing software have provided an increasingly abundant availability of 3D reconstructions of arborizing dendrites, axons, and processes, allowing their detailed study. However, efficient, large-scale methods to rank neural morphologies by similarity to an archetype are still lacking. Using the NeuroMorpho.Org database, we present a similarity search software enabling fast morphological comparison of hundreds of thousands of neural reconstructions from any species, brain regions, cell types, and preparation protocols. We compared the performance of different morphological measurements: 1) summary morphometrics calculated by L-Measure, 2) persistence vectors, a vectorized descriptor of branching structure, 3) the combination of the two. In all cases, we also investigated the impact of applying dimensionality reduction using principal component analysis (PCA). We assessed qualitative performance by gauging the ability to rank neurons in order of visual similarity. Moreover, we quantified information content by examining explained variance and benchmarked the ability to identify occasional duplicate reconstructions of the same specimen. We also compared two different methods for selecting the number of principal components using this benchmark. The results indicate that combining summary morphometrics and persistence vectors with applied PCA using maximum likelihood based automatic dimensionality selection provides an information rich characterization that enables efficient and precise comparison of neural morphology. We have deployed the similarity search as open-source online software both through a user-friendly graphical interface and as an API for programmatic access.


Assuntos
Neurônios , Software , Algoritmos , Axônios , Encéfalo , Funções Verossimilhança , Neurônios/fisiologia
8.
Prog Biophys Mol Biol ; 168: 94-102, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34022302

RESUMO

Advancements in neuroscience research have led to steadily accelerating data production and sharing. The online community repository of neural reconstructions NeuroMorpho.Org grew from fewer than 1000 digitally traced neurons in 2006 to more than 140,000 cells today, including glia that now constitute 10.1% of the content. Every reconstruction consists of a detailed 3D representation of branch geometry and connectivity in a standardized format, from which a collection of morphometric features is extracted and stored. Moreover, each entry in the database is accompanied by rich metadata annotation describing the animal subject, anatomy, and experimental details. The rapid expansion of this resource in the past decade was accompanied by a parallel rise in the complexity of the available information, creating both opportunities and challenges for knowledge mining. Here, we introduce a new summary reporting functionality, allowing NeuroMorpho.Org users to efficiently download digests of metadata and morphometrics from multiple groups of similar cells for further analysis. We demonstrate the capabilities of the tool for both glia and neurons and present an illustrative statistical analysis of the resulting data.


Assuntos
Metadados , Neurociências , Animais , Bases de Dados Factuais , Neurônios
9.
Neuroinformatics ; 16(2): 217-229, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29508123

RESUMO

Recent neuroscientific and technical developments of brain machine interfaces have put increasing demands on neuroinformatic databases and data handling software, especially when managing data in real time from large numbers of neurons. Extrapolating these developments we here set out to construct a scalable software architecture that would enable near-future massive parallel recording, organization and analysis of neurophysiological data on a standard computer. To this end we combined, for the first time in the present context, bit-encoding of spike data with a specific communication format for real time transfer and storage of neuronal data, synchronized by a common time base across all unit sources. We demonstrate that our architecture can simultaneously handle data from more than one million neurons and provide, in real time (< 25 ms), feedback based on analysis of previously recorded data. In addition to managing recordings from very large numbers of neurons in real time, it also has the capacity to handle the extensive periods of recording time necessary in certain scientific and clinical applications. Furthermore, the bit-encoding proposed has the additional advantage of allowing an extremely fast analysis of spatiotemporal spike patterns in a large number of neurons. Thus, we conclude that this architecture is well suited to support current and near-future Brain Machine Interface requirements.


Assuntos
Potenciais de Ação/fisiologia , Interfaces Cérebro-Computador/tendências , Fenômenos Eletrofisiológicos/fisiologia , Neurônios/fisiologia , Animais , Interfaces Cérebro-Computador/estatística & dados numéricos , Bases de Dados Factuais/estatística & dados numéricos , Bases de Dados Factuais/tendências , Humanos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA